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Abstract

The burgeoning population of world is expected to reach about 9-10 billion by the 
end of year 2050. Due to this rapidly increasing population, food productivity is de-
creasing. Temperature induced stress is an important environmental factor that influ-
ences the growth and development of plants. Both low and high temperatures affect 
plant growth and development at whole plant level, tissue and cell level and even at 
sub-cellular level. Temperature variation may affect morphology, anatomy, phenol-
ogy and plant biochemistry at all levels of organization. Direct injuries due to high 
temperatures in plants include protein denaturation and aggregation, and increased 
fluidity of membrane lipids. Indirect or slower high temperature injuries include 
inactivation of enzymes in chloroplast and mitochondria, inhibition of protein syn-
thesis, protein degradation and loss of membrane integrity. Low temperature stress 
during reproductive development induces flower abscission, pollen sterility, pollen 
tube distortion, ovule abortion and reduced fruit set, which ultimately lowers yield. 
A number of approaches are being used to alleviate the effect of temperature stress 
in crop plants. Proper plant nutrition is one of the good strategies to alleviate the 
temperature stress and in crop plants. Plant nutrients play a greater role in improv-
ing the temperature stress tolerance. In this paper we discuss the possible effective 
techniques to alleviate the temperature stress and the role of some macronutrients 
(nitrogen, potassium, calcium and magnesium) micronutrients (boron, manganese, 
and selenium) and salicylic acid in detail as how these nutrients play their role in 
alleviation of temperature stress in crop plant.
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1. Introduction

World’s population is increasing at an alarming rate 
and is expected to reach about nine to ten billion by 
the end of year 2050. The growing population will 
result in considerable additional demand for food 
(Waraich et al, 2011) and it will also contribute to-
wards changing climate, which is an alarming issue 
to the world’s food safety. Due to the effect of vari-
ous abiotic stresses the food productivity is decreas-
ing and to minimize these losses is a major concern 
for all nations to cope with the increasing food re-
quirements (Mahajan and Tuteja, 2005). Temperature 
stresses (high and low temperature) are the major en-
vironmental factors affecting plant growth, develop-
ment and also induce morphological, physiological 
and biochemical changes in plants. According to a 
report of the Intergovernmental Panel on Climatic 
Change (IPCC) (IPCC Expert Meeting Report, 2007) 
the global mean temperature will rise 0.2 ºC per de-
cade in the coming years. This change in global tem-
perature may alter the geographical distribution and 
growing season of agricultural crops (Porter, 2005). 
High temperature stress induces the rapid production 
and accumulation of reactive oxygen species (ROS) 
(Mittler, 2002; Almeselmani et al., 2006; Xu et al. 
2008). These high levels of ROS are harmful to all 
cellular compounds and negatively influence cellular 
metabolic processes (Breusegem et al., 2001). The de-
toxification of these ROS is very important and plants 
have evolved complex strategies to deal with them 
(Asthir et al., 2009). The plant cells typically respond 
to increases in ROS levels by increasing the expres-
sion and activity of ROS-scavenging enzymes and 
increasing their production of antioxidants in order to 
maintain redox homeostasis.

The plant life cycle both vegetative and reproduc-
tive phases are affected by the low temperature stress 

(Nishiyama, 1995). During reproductive development 
low temperature stress induces flower abscission, 
pollen sterility, pollen tube distortion, ovule abortion 
and reduced fruit set, which ultimately lowers yield. 
During the reproductive phase cold stress has impor-
tant economic and social consequences because the 
reproductive phase products are the key components 
of economic yield and are the principle source of food 
for entire humanity (Thakur et al, 2010). The repro-
ductive phase begins with transformation of the meri-
stem into inflorescence and flower and, in annuals, 
ends upon seed reaching maturity. The reproductive 
phase consists of flower initiation, differentiation of 
male and female floral parts, micro- and mega-spo-
rogenesis, development of male and female gameto-
phytes (pollen grain and embryo sac), pollination, mi-
cro- and mega-gametogenesis, fertilization and seed 
development. All these stages respond differently to 
cold stress (Staggenborg and Vanderlip, 1996; Ver-
heul et al., 1996) but collectively all responses are 
negative and reduce net yield.

In response to these temperature stresses various 
approaches are being used, which can mitigate the ef-
fect of stress and lead to the adjustment of the cel-
lular milieu and plant tolerance. In nature stress does 
not generally come in isolation and many stresses act 
hand in hand with each other. In response to these 
stress signals that cross talk with each other, plants 
naturally have developed diverse mechanisms for 
combating and tolerating them. In this review we have 
first emphasized high temperature stress followed by 
cold temperature stress and the injurious effects of 
these stresses on plants. Various mechanisms involved 
in cold and hot acclimation and their role towards 
membrane stabilization have also been discussed. The 
physiological and biochemical mechanisms pertain-
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ing to each stress, and the role of nitrogen, potassium, 
calcium and magnesium, boron, manganese, and sele-
nium have also been discussed in detail as how these 
nutrients play their role in alleviation of temperature 
stress in crop plant.

2. High temperature stress

2.1 Effects of high temperature stress on plants

High temperature stress induces morphological and 
(Giaveno and Ferrero, 2003), anatomical (Zhang et 
al., 2005) as well as physiological and biochemical 
changes in plants. It induces the changes in water re-
lations (Simoes-Araujo et al., 2003; Morales et al., 
2003; Caba˜nero et al., 2004), accumulation of com-
patible osmolytes (Hare et al., 1998; Sakamoto and 
Murata, 2002), decrease in photosynthesis (Sharkova, 
2001; Wise et al., 2004), hormonal changes (Maestri 
et al., 2002) and cell membrane thermostability (Mar-
tineau et al., 1979; Somerville and Browse, 1991). 

High temperatures stress (≤ 40◦C) can cause 
scorching of leaves and twigs, sunburns on leaves, 
branches and stems, leaf senescence and abscission, 
shoot and root growth inhibition, fruit discoloration 
and damage and reduced yield in plants (Guilioni et 
al., 1997; Ismail and Hall, 1999; Vollenweider and 
Gunthardt-Goerg, 2005). In melon, superoptimal tem-
peratures can cause various damages like inhibition 
of seed germination and seedling growth (Kadota, 
1959), depression of female flower expression (Kami-
ya and Tamura, 1965), failure of fertilization, reduc-
tion of fruit growth and sugar accumulation (Suzuki 
and Masuda, 1961). Hall (1992) reported that high 

temperature stress in sugarcane causes a severe reduc-
tion in the first internode length resulting in premature 
death of plants. Sugarcane plants grown under high 
temperatures exhibited smaller internodes, increased 
tillering, early senescence, and reduced total biomass 
(Ebrahim et al., 1998). In rice, anthesis and fertiliza-
tion and to a some extent microsporogenesis (booting), 
are the most susceptible stages to high temperature 
stress (Satake and Yoshida, 1978; Farrell et al., 2006). 
High temperature stress-induced spikelet sterility is 
linked to decreased anther dehiscence, poor shedding 
of pollen, poor germination of pollen grains on the 
stigma and decreased elongation of pollen tubes in 
rice (Prasad et al., 2006).

Environmental stresses in plants have been as-
sociated with production of activated forms of oxy-
gen (Figure 1), including hydrogen peroxide (H2O2), 
singlet oxygen, superoxide, and the hydroxyl radical 
(Anderson, 2002). Reactive oxygen species (ROS) 
are produced continuously as byproducts of differ-
ent metabolic pathways which are located in differ-
ent cellular compartments such as chloroplast, mito-
chondria and peroxisomes (Rio et al., 2006; Navrot et 
al., 2007). Through a variety of reactions, O2

●- leads 
to the formation of H2O2, OH● and other ROS. The 
ROS comprising O2

●-, H2O2, 1O
2, HO2

●-, OH●, ROOH, 
ROO+ and RO+ are highly reactive and toxic and 
causes damage to proteins, lipids, carbohydrates and 
DNA which ultimately results in cell death. Accumu-
lation of ROS as a result of high temperature stress is 
a major cause of loss of crop productivity worldwide. 
(Mittler, 2002; Apel and Hirt, 2004; Mahajan and 
Tuteja, 2005; Tuteja, 2007; Tuteja, 2010; Khan and 
Singh, 2008; Gill et al., 2010.)
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Figure 1. Schematic representation of Reactive Oxygen Species (ROS) generation in chloroplasts, Mitochondria 
and Peroxisomes causing oxidative damage due to abiotic stresses

In wheat (Triticum aestivum L.) high temperature 
stress during reproductive development is a primary 
constraint to its production. Formation of ROS is re-
lated to ethylene production and lipid peroxidation 
and results in membrane fluidity (Weckx et al., 1989). 
Increased ethylene has been shown in mature wheat 
plants, to shorten the grain filling period, decrease 
1000 kernel weight, hasten maturity and trigger pre-
mature senescence (Beltrano et al., 1999). Ethylene 
overproduction has also been found during or after 
recovery from water stress (Beltrano et al., 1999 ; 
Morgan et al., 1990; Narayana et al., 1991; Beltrano 
et al., 1997). 

Don et al. (2005) reported that high temperature 
effects the high molecular weight fraction of gluten 
protein in wheat. They reported significant effects of 
prolonged exposure to high temperatures (up to 40◦C) 
on gluten in macropolymer (GMP) and its constitut-
ing gluten in particles and concluded that changes in 
dough mixing requirements were directly related to 
changes in gluten in macropolymer. Similar reduc-
tions were observed in starch, protein and oil contents 
of the maize kernel (Wilhelm et al., 1999) and grain 
quality in other cereals under high temperature stress 
(Maestri et al., 2002)

2.2. Approaches to induce high temperature stress 
tolerance

Among the various methods to induce high tempera-
ture stress in plant, foliar application of, or pre-sowing 
seed treatment with, low concentrations of inorganic 
salts, osmoprotectants, signalling molecules (e.g., 
growth hormones) and oxidants (e.g., H2O2) as well 
as preconditioning of plants are common approaches 
(Wahid et al; 2007)

In black spruce high-temperature preconditioning 
has been shown to reduce the heat-induced damage 
to seedlings (Colclough et al., 1990). Tomato plants 
exhibited good osmotic adjustment by maintaining 
the osmotic potential and stomatal conductance, and 
better growth in preconditioned plants as compare to 
control or non-preconditioned plants (Morales et al., 
2003). Similarly, turfgrass leaves manifested higher 
thermostability, lower lipid peroxidation product 
malondialdehyde (MDA) and lower damage to chlo-
roplast upon exposure to high temperature stress in 
heat-acclimated as compared to non-acclimated plants 
(Xu et al., 2006). Pre-sowing hardening of the seed at 
high temperature (42 ºC) resulted in plants tolerance 
to overheating and dehydration and showing higher 
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levels of water-soluble proteins and lower amounts of 
amide-N in leaves compared to non-hardened plants 
in pearl millet (Tikhomirova, 1985). Kolupaev et al 
(2005) reported that exogenous application of Ca2+ 
promotes plant’s heat tolerance. Calcium application 
in the form of CaCl2 prior to the stress treatment has 
been shown to increase the malondialdehyde (MDA) 
content (lipid peroxidation product), and stimulated 
the activities of guaiacol peroxidase, SOD and cata-
lase, which could be the reasons for the induction of 
heat tolerance. 

Glycinebetaine and polyamines are the low mo-
lecular weight organic compounds have been suc-
cessfully applied to induce heat tolerance in various 
plant species. Wahid and Shabbir (2005) reported 
that barley seeds pre-treated with glycinebetaine led 
to plants with lower membrane damage, better pho-
tosynthetic rate, improved leaf water potential and 
greater shoot dry mass, compared to untreated seeds. 
While in tomato exogenous application of 4mM sper-
midine improved heat resistance by improving chlo-
rophyll fluorescence properties, hardening and higher 
resistance to thermal damage of the pigment-protein 
complexes structure, and the activity of PSII during 
linear increase in temperature (Murkowski, 2001). 
Under heat stress, Ca2+ is required for maintenance of 

antioxidant activity and not for osmotic adjustment in 
some cool season grasses (Jiang and Haung, 2001). 
Under heat stress, Ca2+ requirement for growth is high 
to mitigate adverse effects of the stress (Kleinhenz 
and Palta, 2002). 

The mechanisms through which the plants can 
cope with high temperature stress are described in 
Fig.2. The plants can cope with the high temperature 
stress by physiological, morpho-anatomical and bio-
chemical alterations. Under high temperature stress 
the plants accumulate the compatible osmolytes which 
helps to increase the retention of water in plants for 
better stomatal regulation and increased photosynthetic 
rate (Figure 2). The plants also exhibit some morpho-
anotomical alterations to cope with high temperature 
stress which includes reduction in cell size, closure of 
stomata, increased stomatal and trichomes densities 
and greater xylem vessels (Figure 2). The third mecha-
nism to cope with the high temperature is the biochemi-
cal alterations. The plants increased the stress related 
proteins which enhance the activities of antioxidants 
like superoxide dismutase (SOD); Catalase (CAT) and 
peroxidise (POD) in the plant cells. These antioxidants 
scavenge the ROS and reduce the photo-oxidation and 
maintain the integrity of chloroplast membrane and in-
crease the photosynthetic rate (Figure 2).
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Figure 2. Schematic representation of morphological, Physiological and biochemical alteration of plants to cope 
with high temperature stress. 

3. Low Temperature Stress

3.1 Effects of low temperature stress on plants

Rate of metabolic processes (biochemical processes) 
deceases gradually with a decrease in temperature and 
may ceases under severe stresses (Taize and Zieger, 
2001). Cold temperature stress (0 to -10◦C) has broad 
spectrum affects on cellular components and meta-

bolic processes of plants. Cold temperature extremes 
impose stresses of variable severity that depending on 
the intensity and duration of the stress. Several studies 
indicate that the membrane systems of the cell are the 
primary site of freezing injury in plants (Levitt, 1980; 
Steponkus, 1984) and freeze-induced membrane dam-
age results primarily from the severe dehydration as-
sociated with freezing (Steponkus, 1984; Steponkus 
et al. 1993). As temperatures drops below 0ºC, ice 
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formation is generally initiated in the intercellular 
spaces in the extracellular fluid having a higher freez-
ing point (lower solute concentration) than the intra-
cellular fluid (Jan et al.; 2009). Because the chemical 
potential of ice is less than that of liquid water at a 
given temperature, the formation of extracellular ice 
results in a drop in water potential outside the cell. 
Consequently, there is movement of unfrozen water 
down the chemical potential gradient from inside the 
cell to the intercellular spaces. At 10ºC, more than 
90% of the osmotically active water typically moves 
out of the cells, and the osmotic potential of the re-
maining unfrozen intracellular and intercellular fluid 
is greater than 5 osmolar. Multiple forms of membrane 
damage can occur as a consequence of freeze induced 
cellular dehydration including expansion-induced-
lysis, lamellar-to-hexagonal- II phase transitions, and 
fracture jump lesions (Steponkus et al., 1993). 

Low temperature induced change in membrane 
fluidity is one of the immediate consequences in plants 
during low temperature stress and might represent a 
potential site of perception and/or injury (Horváth et 
al. 1998; Orvar et al. 2000).It is well documented that 
freeze-induced production of reactive oxygen species 
contributes to membrane damage and that intercellular 
ice can form adhesions with cell walls and membranes 
and cause cell rupture (Olien and Smith, 1977). There 
is also an evidence that protein denaturation occurs 
in plants at low temperature (Guy et al. 1998) which 
could potentially result in cellular damage.

3.2 Approaches to induce low temperature stress 
tolerance

The importance of proper membrane fluidity in low 
temperature tolerance has been delineated by mutation 
analysis, transgenic and physiological studies. At low 
temperature, greater membrane lipid unsaturation ap-
pears to be crucial for optimum membrane function. 

The plants have several mechanisms or approaches 
to cope with low temperature stress (Steponkus et al. 
1993). Cold acclimation is a key approach to stabilize 
membranes against freezing injury. It prevents expan-
sion-induced-lyses and the formation of hexagonal II 
phase lipids in rye and other plants (Steponkus et al. 
1993). Multiple mechanisms appear to be involved in 
this stabilization. The best documented are changes in 
lipid composition (Steponkus et al. 1993). Similarly, 
the accumulation of sucrose and other simple sugars 
that typically occurs with cold acclimation also seems 
likely to contribute to the stabilization of membranes 
as these molecules can protect membranes against 
freeze-induced damage in vitro (Strauss and Hauser, 
1986; Anchordoguy et al. 1987). In addition, there 
is emerging evidence that certain novel hydrophilic 
and late embryogenesis abundant (LEA) proteins also 
participate in the stabilization of membranes against 
freeze-induced injury (Epand et al., 1995). These hy-
drophilic and LEA proteins are predicted to contain re-
gions capable of forming amphipathic α-helices which 
are shown to have strong effect on intrinsic curvature 
of monolayers and their propensity to form hexago-
nal II phase. They are said to defer their formation 
at lower temperatures (Epand et al. 1995). Another 
mechanism through which plants can cope with the 
low temperature stress might be the extensive water 
binding capacity of hydrophilic proteins which pro-
vide a protective environment in the proximity of sta-
bilization. Although freezing injury is thought to result 
primarily from membrane lesions caused by cellular 
dehydration, additional factors may also contribute to 
freezing-induced cellular damage (Jan et al, 2009).

The enhancement of antioxidative mechanisms 
(Aroca et al. 2003), increased levels of sugars in the 
apoplastic space (Livingston and Henson, 1998), and 
the induction of genes encoding molecular chaperones 
(Guy and Li, 1998), respectively, could have protective 
effects to reduce the freez induced cellular damage.
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4.	 Nutrient management approaches to 
alleviate the temperature stresses

Inadequate and unbalanced supply of mineral nutri-
ents and impaired soil fertility are particular prob-
lems, causing decreases in global food production, 
especially in the developing countries. It is estimated 
that around 60% of cultivated soils have growth-
limiting problems associated with mineral-nutrient 
deficiencies and toxicities (Cakmak, 2002). Adequate 
nutrition is essential for the integrity of plant structure 
and key physiological processes such as nitrogen and 
magnesium is structural part of chlorophyll needed 
for photosynthesis, phosphorus is needed for energy 
production and storage, is a structural part of nucleic 
acids, potassium is needed for osmotic regulation and 
activation of enzymes(Waraich et al, 2011).

Therefore, a well-nourished plant is expected to 
produce more biomass per unit of transpired water 
than an unwell-nourished one. Radin and Mathews 
(1989) also found that N and P deficient plants strong-
ly reduced the hydraulic conductivity of the root corti-
cal cells. Our recent work suggested that plants nutri-
ents are not only required for better plant growth and 
development, but also helpful to improve agricultural 
WUE (Waraich et al, 2011). A number of reports are 
available indicating the role of nutrients in alleviating 
various abiotic stresses such as Si has beneficial ef-
fects on increased salinity tolerance in wheat (Tahir et 
al., 2011), K for increased salinity tolerance (Munns, 
2005). According to Byrnes and Bumb (1998), in the 
next 20 years fertilizer consumption has to increase 
by around 2-fold to achieve the needed increases in 
food production. It seems that in the coming decades 
plant-nutrition-related research will be a high-priority 
research area contributing to crop production and sus-
taining soil fertility. Survival and productivity of crop 
plants exposed to environmental stresses are depen-
dent on their ability to develop adaptive mechanisms 
to avoid or tolerate stress. Accumulating evidence 

suggests that the mineral nutritional status of plants 
greatly affects their ability to adapt to adverse environ-
mental conditions. This review is an effort to highlight 
the the role of essential mineral nutrients in improving 
the temperature stress tolerance in crop plants.

4.1 Macronutrients

Nitrogen

Nitrogen plays a very crucial role in temperature 
stress tolerance. At higher temperatures, the intenstiy 
of light is also very high. So high light intensity, as a 
function of high temperature, affects mineral nutrients 
uptake in plants and affect plant growth negatively. 
Of the mineral nutrients, nitrogen plays a major role 
in utilization of absorbed light energy and photosyn-
thetic carbon metabolism (Kato et al., 2003; Huang 
et al., 2004). An excess of non-utilized light energy 
can be expected to occur in N-deficient leaves, where 
it leads to a high risk of photo-oxidative damage. In 
rice plants under high light intensity, N deficiency is 
associated with enhanced lipid peroxidation (Huang 
et al., 2004). Kato et al. (2003) reported that plants 
grown under high-intensity light with a high N sup-
ply had greater tolerance to photo-oxidative damage 
and higher photosynthesis capacity than those grown 
under similar high light with a low N supply. Utiliza-
tion of the absorbed light energy in electron transport 
was also much higher in N-adequate than in N-defi-
cient plants. These results indicate that N-adequate 
plants are able to tolerate excess light by maintaining 
photosynthesis at high rates and developing protec-
tive mechanisms. To avoid the occurrence of photo-
oxidative damage in response to excess light energy, 
the thylakoid membranes have a protective mecha-
nism by which excess energy is dissipated as heat. 
Dissipation of excess light energy is associated with 
enhanced formation of the xanthophyll pigment zea-
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xanthin, which is synthesized from violaxanthin in the 
light-dependent xanthophyll cycle (Demmig-Adams 
and Adams, 1992, 1996). On the other hand, in plants 
suffering from N deficiency, the conversion of xan-
thophyll cycle pigments and formation of zeaxanthin 
were enhanced, and caused the chlorophyll bleaching, 
particularly under high light intensity (Verhoeven et 
al., 1997; Kato et al., 2003). In spinach, N-deficient 
plants dissipate a greater fraction of the absorbed light 
energy than N-adequate ones: up to 64% and only 
36%, respectively. This difference was associated 
with corresponding changes in xanthophyll cycle pig-
ments: about 65% of the total xanthophyll pigments 
were present as zeaxanthin and antheraxanthin in N-
deficient plants compared with 18% in the N-adequate 
plants (Verhoeven et al., 1997). These results indicate 
impaired use of the absorbed light energy in photo-
synthetic fixation of CO2, with consequently enhanced 
demand for protection against excess light energy, in 
N-deficient plants. Certainly, the reduction in the uti-
lization of light energy and the consequently elevated 
need for protection against photo-oxidative damage in 
N-deficient plants can be more marked when the N 
deficiency stress is combined with an environmental 
stress. Bendixen et al (2001) reported that the form 
of N in which it is supplied affects plant tolerance 
to damage caused by temperature stress. e.g; light-
induced conversion of violaxanthin to zeaxanthin, as 
a means to dissipate excess light energy was found to 
be stronger in bean leaves supplied with nitrate than in 
those supplied with ammonium. Similar results have 
been reported by Zhu et al. (2000), they demonstrated 
that nitrate-grown bean plants had higher tolerance 
to photodamage than ammonium-grown ones. Under 
very high light intensity ammonium-grown plants 
had, therefore, higher levels of lipid peroxidation and 
higher contents of antioxidative enzymes.

Nitrogen fertilization has been reported to miti-
gate the adverse effects of abiotic stresses (Waraich 

et al, 2011). Nitrogen in the form of nitric oxide (NO) 
is a highly reactive, membrane-permeant free radi-
cal with a broad spectrum of regulatory functions in 
many physiological processes, such as seed germina-
tion, leaf expansion, cell senescence, ethylene emis-
sion, stomatal closure and programmed cell death, 
and a signal molecular mediating responses to abiotic 
and biotic stresses such as drought stress, salinity, 
UV-B-radiation and heat stress (Zhao et al., 2007; 
Yang et al., 2006; Crawford and Guo, 2005 and Zhang 
et al., 2006). NO may protect plant against stress by 
acting as an antioxidant directly scavengering the re-
active oxygen species (ROS) generated under high or 
low temperature stress. (Wendehenne et al., 2001). 
Some earlier reports revealed that NO act as a signal 
in inducement of thermotolerance in plant by activat-
ing active oxygen scavenging enzymes (Song et al., 
2006). In addition, Uchida et al. (2002) reported that 
northern blot analysis demonstrated that NO protected 
the chloroplast against oxidative damage under heat 
stress by inducing expression of gene encoding small 
heat shock protein 26 (HSP26).

Potassium

Mineral nutrition of plants plays a critical role in in-
creasing plant resistance to environmental stresses 
(Marschner, 1995). Among the mineral nutrients, Po-
tassium (K) plays a crucial role in survival of crop plants 
under environmental stress conditions. K is essential 
for many physiological processes, such as photosyn-
thesis, translocation of photosynthates into sink organs, 
maintenance of turgidity and activation of enzymes 
under stress conditions (Marschner,1995;Mengel and 
Kirkby, 2001). Potassium deficiency causes severe re-
duction in photosynthetic CO2 fixation and impairment 
in partitioning and utilization of photosynthates. Such 
disturbances result in excess of photosynthetically pro-
duced electrons and thus stimulation of ROS produc-
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tion by intensified transfer of electrons to O2 (Waraich 
et al, 2011). K deficiency also caused an increase in 
NADPH dependent O2 generation in root cells which 
indicates that increased ROS production during both 

photosynthetic electron transport and NADPH-oxidiz-
ing enzyme reactions may be involved in membrane 
damage and chlorophyll degradation in K deficient 
plant (Waraich et al, 2011)

Figure 3. Schematic representation of potassium deficiency resulting in ROS production in plants.

Plants have developed a wide range of adaptive/resist-
ance mechanisms to maintain productivity and ensure 
survival under a variety of environmental stresses like 
drought, chilling, frost stresses and high temperature 
stress. Low temperature stress affects the fluidity of 

membrane lipids thus may alters membrane struc-
ture (Marschner, 1995). Low temperature also affects 
photosynthetic electron transport, stomatal conduct-
ance, rubisco activity, and CO2 fixation in plants due 
to conversion of O2 to ROS (Huner et al., 1998; Foyer 
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et al., 2002). Under low supply of K, chilling- or frost 
induced photo-oxidative damage can be exacerbated 
causing more decreases in plant growth and yield. 
Potassium supply in high amounts can provide pro-
tection against oxidative damage caused by chilling 
or frost. 

Kafkafi (1990) reported that increasing K con-
centration in irrigation water provided important pro-
tection against stem damage from low night temper-
atures in carnation plants. Similarly, Grewal and Singh 
(1980) reported that in potato plants, decreases in yield 
and increases in leaf damage induced by frost under 
field conditions could be alleviated by high application 
of K fertilizer. Similar results have also been reported 
by Hakerlerler et al (1997). They observed that K sup-
ply enhanced total plant yield by 2.4-fold, 1.9-fold, 
and 1.7-fold in tomato, pepper, and eggplant, respect-
ively depending on source of potassium fertilizer. 

Calcium

Calcium plays a vital role in regulating a number of 
physiological processes in plants at tisuue, cellular 
and molecular levels that influence both growth and 
responses to environmental stresses (Waraich et al, 
2011). Generally, plant genotypes that tolerate low 
temperature stress are able to maintain high leaf water 
potential by closing their stomata and preventing tran-
spirational water loss (Wilkinson et al., 2001). Calcium 
has been shown to be an essential requirement for chill-
ing induced stomatal closure in chilling tolerant geno-
types. Increasing the Ca2+ supply induces stomatal clo-
sure, and this effect is most distinct in plants grown at 
low temperatures. It is also believed that ABA induced 
stomatal closure is partially mediated by Ca2+ released 
from internal guard cell stores or the apoplast (Wilkin-
son et al., 2001), and this function seems to make Ca2+ 
a major contributing factor to chilling tolerance and 
protection of leaves from dehydration.

Calcium is considered to play a role in mediating 
stress response during cold injury, recovery from in-
jury, and acclimation to cold stress (Palta, 2000). It 
has been suggested that Ca is necessary for recovery 
from low temperature stress by activating the plasma 
membrane enzyme ATPase which is required to pump 
back the nutrients that were lost in cell damage (Palta, 
2000). Since dehydration is the common denominator, 
Ca also has a role to play in freeze injury tolerance. 
Calcium has a very prominent role in the maintenance 
of cell structure. Its activates the plasma membrane 
enzyme ATPase which pumps back the nutrients lost 
during cell membrane damage due to Ca deficiency 
and recover the plant from cold injury. Calcium also 
plays a role as calmodulin which controls the plant 
metabolic activities and enhances the plant growth 
under low temperature stress condition (Waraich  
et al., 2011)

Magnesium

Magnesium (Mg) is involved in numerous physio-
logical and biochemical processes in plants affect-
ing growth and development (Waraich et al, 2011). 
It plays an essential role in photosynthesis and many 
other metabolic processes. Many key chloroplast en-
zymes are strongly affected by small variations in Mg 
levels (Shaul, 2002). Both Mg deficiency and Mg ex-
cess have detrimental effects on plant photosynthesis 
(Shabala and Hariadi, 2005). There are several reports 
that photosynthesis rate is significantly declined in 
leaves of Mg deficient plants (Fischer, 1997; Sun and 
Payn, 1999; Ridolfi and Garrec, 2000; Hermans and 
Verbruggen, 2005). Due to temperature stress the re-
active oxygen species (ROS) are produced continu-
ously as byproducts of different metabolic pathways 
which are located in different cellular compartments 
such as chloroplast, mitochondria and peroxisomes 
(Rio et al., 2006; Navrot et al., 2007). The ROS are 
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highly toxic and cause damage to proteins, lipids, car-
bohydrates and DNA which ultimately results in cell 
death. Accumulation of ROS as a result of high tem-
perature stress is a major cause of loss of crop produc-
tivity worldwide. (Tuteja, 2007; Tuteja, 2010; Khan 
and Singh, 2008; Gill et al., 2010).

It is well documented that Mg plays an important 
function in the electron transport chain of the chloro-
plast. Mg plays role to transfer energy from photosys-
tem II to nicotinamide adenine dinucleotide phosphate 
(NADP+) and protect thylakoid memebrane which 
inturn reduce accumulation of excitation energy and 
oxidative damage (Halliwell, 1987). Yu et al (1999) 
reported that oxidative stress is one of the components 
of mineral nutrient deficiency stress. Mg increased 
the activities of antioxidative enzymes and the con-
centration of antioxidant molecules in bean (Cakmak 
and Marschner, 1992; Cakmak, 1994), Mentha pule-
gium (Candan and Tarhan, 2003), maize (Tewari et 
al., 2004), pepper (Anza et al., 2005), and mulberry 
(Tewari et al., 2006). Moreover, Mg deficient plants 
have also shown to accumulate significantly higher 
amount of malondialdehyde (MDA), a general indica-
tor of lipid peroxidation (Candan and Tarhan, 2003; 
Tewari et al., 2004). 

Magnesium increases the root growth and root 
surface area which helps to increase uptake of water 
and nutrients by root. Mg being a constituent of 
chlorophyll increases the amount of sucrose and en-
hances the transport of sucrose from leaves to roots 
(Waraich et al, 2011). Magnesium improves carbohy-
drates translocation by increasing phloem export and 
reduces ROS generation and photo-oxidative damage 
to chloroplast under temperature stress (high or low) 
conditions. Maintenance of chloroplast structure by 
improving Mg nutrition enhances the photosynthetic 
rate under temperature stress which in turn improves 
the productivity (Waraich et al, 2011).

4.2 Micronutrients

Boron

Boron is directly or indirectly involved in several 
physiological and biochemical processes during plant 
growth such as cell elongation, cell division, cell wall 
biosynthesis, membrane function, nitrogen (N) me-
tabolism, leaf photosynthesis, and uracil synthesis 
(Marschner, 1995; Zhao and Oosterhuis, 2002). Low 
temperature stress inhibits the growth and development 
of plants (Xu et al., 2008). Temperature stress(high or 
low) induces the production of reactive oxygen species 
(ROS) such as superoxide radical (O2.

-) and hydrogen 
peroxide (H2O2) (Xu et al., 2008). The accumulation 
of ROS damages membrane lipids and can lead to the 
death of plant cells (Molassiotis et al., 2006).Plants 
possess enzymatic and non-enzymatic antioxidants in 
order to scavenge ROS.The enzyme antioxidants are 
superoxide dismutase (SOD), catalase (CAT), guaiacol 
per oxidase (GPX), glutathione peroxidase (GSH-Px), 
ascorbate peroxidase (APX), glutathione reductase 
(GR), dehydroascorbate reductase (DHAR) and mono-
dehydroascorbate reductase (MDHAR),while non-
enzymatic antioxidants include reduced glutathione 
(GSH) and ascorbate (AsA) (Asada, 1992).

Boron can increase the antioxidant activities of 
plants and thereby alleviate ROS damage induced by 
temperature stress. Boron nutrition improves sugar 
transport in the plant body which helps to improve 
seed germination and seed grain formation. This in 
turn improves the yield by improving the temperature 
stress (Waraich et al., 2011). B application also im-
proves the CHO metabolism and decreases the phe-
nolic compounds in leaves. This inturn reduces the 
production of ROS species and enhances the photo-
synthetic rate and reduces the cell damage (Waraich 
et al., 2011).
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Manganese (Mn)

Manganese is necessary in photosynthesis, nitrogen 
metabolism and to form other compounds required 
for plant metabolism. Temperature stress (high and 
low) reduces the nutrient uptake and induces many 
morphological and physiological disorders in plants. 
Interveinal chlorosis, brown necrotic spots and de-
layed maturity are the characteristics of Mn deficien-
cy.Manganese has no direct role in temperature stress 
alleviation. It can reduce the adverse effects of tem-
perature stress indirectly by enhancing the photosyn-
thetic rate, and nitrogen metabolism in the plant body. 
Manganese nutrition reduces the interveinal chlorosis, 
brown necrotic spots on leaves and reduces premature 
leaf drop. Manganese (Mn) is also reported to involve 
in the activation of many enzymes in plant systems, 
mostly in oxidation–reduction, decarboxylation and 
hydrolytic reactions (Marschner, 1995) hence may 
play a role in detoxification of ROS.

Recently, it has been reported that Mn has a cru-
cial role in diminution the production of oxygen free-
radicals and increase the anti-oxidative compounds 
and enzymatic activities (Aktas et al., 2005; Turhan et 
al., 2006; Aloni et al., 2008) under temperature stress.

Selenium

Selenium was recognized as an essential trace element 
with a relatively low concentration range (Schwartz 
and Foltz, 1957) and its physiological role was es-
tablished when it was shown to be one of the gluta-
thione peroxidase (GPx) components (Rotruck et al., 
1973). This enzyme is termed a selenoprotein since 
it contains l-selenomethionine and l-selenocysteine 
residues (Low and Berry, 1996). Selenium deficiency 
is usually associated with increased lipid peroxida-
tion which alters the integrity of cell membranes and 

consequently, affects cell functions (Stadtman, 1990; 
Valko et al., 2005).

Recent studies have shown that Se at low con-
centrations can protect plants from several types of 
abiotic stresses (Hawrylak-Nowak et al., 2010 ; Va-
ladabadi et al., 2010).Temperature stress (high tem-
perature) can cause premature leaf senescence which 
leads to loss of chlorophyll, increased membrane 
damage and progressive decline in photosynthetic 
capacity (Djanaguiraman et al, 2009). High temper-
ature stress directly damages the photosynthetic ap-
paratus and decreases both photosynthetic rate and 
duration of the assimilate supply (Prasad et al, 2008; 
2009). Temperature stress (high and low) can promote 
accumulation of reactive oxygen species (ROS) in the 
chloroplasts and decrease the antioxidant activity. A 
decrease in antioxidant enzyme activity is noticed 
during leaf senescence (Srivalli and Khanna-Chopra, 
2004). Selenium (Se) can prevent oxidative damage 
to body tissues (Lobanov et al, 2008) because of its 
structural role in synthesis of glutathione peroxidase 
enzyme. Se can also increase tolerance of plants ex-
posed to low temperature (Hawrylak-Nowak et al., 
2010), drought stress (Valadabadi et al., 2010) and 
aluminum toxicity (Cartes et al, 2010). Djanaguira-
man et al (2005) reported that foliar spray of Se can 
increase antioxidant enzyme activity and decrease 
membrane damage and ROS content in soybean [Gly-
cine max (L.) Merr.]. Similarly, Freeman et al. (2010) 
reported that molecular mechanism responsible for 
Se accumulation in Stanleya pinnata revealed higher 
expression of genes involved in sulfur assimilation, 
antioxidant activities and defense genes of jasmonic 
acid and salicylic acid pathway.They further reported 
Se can delay leaf senescence and increase the carbon 
supply to developing grain under high temperature 
stress mainly because of its antioxidative and defense 
gene expression role.
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Recent findings on lettuce (Lactuca sativa L.) and 
ryegrass (Lolium perenne L.) show that although Se 
is toxic at high concentrations, it can exert beneficial 
effects on plants at low concentrations. Selenium can 
increase the tolerance of plants to UV-induced oxida-
tive stress as well as delay senescence and promote 
the growth of aging seedlings (Hartikainen et al, 
2000; Xue et al., 2001). Xue et al. (2001) reported 
that plants grown under high temperature stress 
showed less senescence related oxidative stress and 
maintained green leaf color for a longer period when 
treated with selenium. They further reported that Se-
treated plants showed an anti-aging affect that was 
related to decrease lipid peroxidation and enhanced 
glutathione peroxidase (GPX) activity.

Others

High temperature stress can cause serious perturba-
tions in plant growth and development which may be 
due to membrane disruptions, metabolic alterations 
and generation of oxidative stress (Mittler, 2002; Pos-
myk and Janas, 2007). Salicylic acid plays a key role 
in providing tolerance against high temperature stress. 
Dat et al (1998) reported that foliar spray of lower 
concentrations of salicylic acid in mustard increased 
the H2O2 level and also reduced the Catalase (CAT) 
activity when accompanied with hardening (45◦C for 
1 h) thereby increasing the potential of plants to with-
stand the heat stress. Larkindale and Huang (2004) 
reported that the pre-treatment with salicylic acid in 
Agrostis stolonifera had no effect on POX activity, 
whereas, the CAT activity declined, compared to con-
trol. They further reported that SA treatment enhanced 
the activity of enzyme ascorbate peroxidase. A similar 
response was observed in potato plantlets, raised from 
the cultures, supplemented with lower concentrations 
of acetyl salicylic acid (Lopez-Delgado et al., 1998). 

Besides providing tolerance to the plants against high 
temperature stress, exogenous application of SA also 
induces resistance against the low temperature stress 
(chilling or cold stress). An enhanced cold toler-
ance in maize plants, grown in hydroponic solutions, 
supplemented with 0.5mM of salicylic acid was ob-
served by Janda et al. (1997, 1999). SA application 
reduced electrolyte leakage and CAT activity with a 
concomitant enhancement in the activities of glutathi-
one reductase and guaiacol peroxidise. SA may ex-
ert deleterious effects on plants under normal growth 
conditions. Janda et al (1998, 2000) observed a de-
cline in net photosynthetic rate, stomatal conductance 
and transpiration rate in maize plants after 1 day of 
SA treatment under normal growth conditions. Kang 
and Saltveit (2002) reported that electrolyte leakage 
due to low temperature stress in the leaves of maize, 
cucumber and rice plants can be significantly reduced 
by the application of lower concentrations of salicylic 
acid. Similar reports also indicate that exogenous 
salicylic acid application alleviates the damaging ef-
fects of low temperatures in rice and wheat (Szalai et 
al., 2002; Tasgin et al., 2003), bean (Senaratna et al., 
2000) and banana (Kang et al., 2003a) by activating 
various antioxidant enzymes in maize (Janda et al., 
1999, 2000) and banana (Kang et al., 2003b).

5. Conclusions

Temperature stress (high and low) is one of the impor-
tant environmental factors that may affect morphol-
ogy, anatomy, phenology and plant biochemistry at 
all levels of organization. Direct injuries due to high 
temperatures in plants include protein denaturation 
and aggregation, and increased fluidity of membrane 
lipids. Indirect or slower high temperature injuries 
include inactivation of enzymes in chloroplast and 
mitochondria, inhibition of protein synthesis, protein 



Journal of Soil Science and Plant Nutrition, 2012, 12 (2), 221-244

235Alleviation of temperature stress by nutrient management in crop plants: a review

degradation and loss of membrane integrity. Low 
temperature stress during reproductive development 
induces flower abscission, pollen sterility, pollen tube 
distortion, ovule abortion and reduced fruit set, which 
ultimately lowers yield. Due to these risks, it is neces-
sary to minimise the detrimental effects of temperature 
stress in plants below permissible limits. The manage-
ment of plant nutrients is very helpful to develop plant 
tolerance to temperature stress. Better plant nutrition 
can effectively alleviate the adverse effects of temper-
ature stress by a number of mechanisms. Temperature 
stress (high and low) results in increased generation 
of the reactive oxygen species (ROS) due to energy 
accumulation in stressed plants which increases the 
photo-oxidative effect and damage the chloroplast 
membrane. Application of nutrients like N, K, Ca and 
Mg reduce the toxicity of ROS by increasing the con-
centration of antioxidants like superoxide dismutase 
(SOD); Catalase (CAT) and peroxidise (POD) in the 
plant cells. These antioxidants scavenge the ROS and 
reduce the photo-oxidation and maintain the integrity 
of chloroplast membrane and increase the photosyn-
thetic rate in the crop plants. Nutrients like K and Ca 
improve intake of water which helps in stomatal regu-
lation and enhances the temperature stress tolerance 
by maintaining the plant body temperature. Applica-
tion of K and Ca helps in osmotic adjustment. These 
nutrients help to maintain high tissue water potential 
under temperature stress condition. The micronutri-
ents like B, Mn and Se alleviate the adverse effects 
of temperature stress by activating the physiological, 
biochemical and metabolic processes in the plants. 
Selenium (Se) and Salicylic acid (SA) application can 
increase the temperature stress tolerance by increas-
ing antioxidant enzyme activity and decrease mem-
brane damage by ROS. The literature available on this 
aspect is insufficient to fully understand the role of Se 
and SA to minimise detrimental effects of temperature 
stress. Therefore, more future research is required for 

better understanding of interactions between temper-
ature stress and Se in soil-plant systems.
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