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Abstract

This work proposes a linear algorithm which relates precipitable water (PW) with 
altitude and distance from the coast, on a regional scale. For precipitable water, 
the ERA-Interim (ECMWF) database for the period 1989-2010 was used, while 
a digital elevation model was used for the geographical variables. The results ob-
tained indicate statistical significance between the two variables (p< 0.01), with a 
confidence level of 99%. The model makes it possible to describe the mean monthly 
space-time variability of precipitable water, stratifying the study area into clearly 
differentiated zones. 
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1. Introduction

Atmospheric water vapour is the principal contributor 
to the greenhouse effect and plays a key role in our un-
derstanding of the Earth’s climate. Precipitable water 
(PW) is the amount of vertically integrated water va-
pour and can be expressed in g cm−2, or as the height of 
an equivalent column of liquid water in cm. Tradition-
ally, there have been three atmospheric water vapour 
observing systems on a global scale: radio soundings, 
general circulation models and satellite observations. 
PW is an important component of the hydrological cy-
cle and is adopted as an input variable in global clima-
tological studies. Moreover, it has the potential to sup-
port hydrological, biospheric and atmospheric model-
ling efforts, on both local and regional scales, since 
it is widely used in energy budget and evapotranspi-
ration studies (Hadjimitsis et al., 2011). Furthermore, 
PW is an essential requirement in atmospheric correc-
tion of high spatial resolution satellite data, and it is 
also necessary for enhancing the precision of land sur-
face temperature estimates obtained from satellite data 
(Wan, 1999; Morales et al., 2002; Morales and Parra, 
2002; Parra et al., 2006; Vera et al., 2010).

One way of obtaining the PW is through radio 
soundings or database compilations, such as those ex-
tracted from Moderate Resolution Imaging Spectro-
radiometer (MODIS) and ERA-Interim, an ensemble 
of meteorological data based on the Reanalysis car-
ried out by the European Centre for Medium-Range 
Weather Forecasts. ERA-Interim (Dee et al., 2011) 
considers information from 1 January 1989 to the 

present, and can be accessed on line (http://www.
ecmwf.int/research/era/do/get/era-interim). The in-
formation is presented in the form of both daily and 
monthly average values, and covers the whole planet 
with a grid resolution of 1.5 degrees of latitude and 
longitude. For each node of the grid, profiles are avail-
able for temperature, pressure, specific humidity and 
other variables. 

The objective of the present communication is to 
propose a simple linear algorithm for estimating and 
describing the monthly mean space-time variability of 
precipitable water, on a regional scale, based on the 
geographical characteristics of the observation point.

2. Materials and methods

2.1 Study area

The study area is the Araucanía Region, Chile (Fig-
ure 1), with a total area of 31,840.3 km2. The study 
area presents two well differentiated climatic charac-
teristics. The northern part of the Region has a warm 
temperate climate with a short dry season (less than 4 
months), while the part lying to the south of latitude 
-38° is associated with a wet temperate climate, with 
Mediterranean influence. The Region presents distinct 
geographical units: coastal plain, coastal mountain 
range, central depression, Andean pre-cordillera and 
Andes Mountains, with average altitudes varying be-
tween 200 and 2,000 m.a.s.l.
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Figure 1. Study area: Araucanía Region, Chile.

2.2 Precipitable water

For this study, the average monthly precipitable water 
values were obtained from data supplied by ERA-In-
terim for the period 1989-2010. Considering that the 
grid resolution is around 166.5 x 166.5 km, the data 
were interpolated to bring them down to a resolution 
of 20 x 20 km, using kriging interpolation by blocks 
with a linear variogram. The interpolated information 
was used to apply downscaling (Fuentes et al., 2000; 
Wetterhall et al., 2007) to obtain the precipitable wa-
ter vapour at a resolution of 1 km x 1 km, to coincide 
with the spatial resolution of one pixel of the NOAA 
satellite image. The following linear model is pro-
posed for the parameterization of precipitable water 
as a function of geographical characteristics such as 
altitude and distance from the coast:

PW = A + B • ALT + C • DIL + γ	   	 (1) 

A, B and C are monthly mean coefficients depend-
ing on latitude and longitude; ALT is the altitude (m), 
DIL represents the distance from the coast (m) and 

g represents the error associated with estimation in g 
cm−2. Equation 1 is founded because the amount of 
water vapour in the atmosphere is affected by temper-
ature variations and depends on variations in altitude 
(ALT), and geographical conditions, such as distance 
to the Pacific Ocean (DIL) (AGU, 2002; Parwati et al, 
2007). The application of the model assumes the use 
of a digital elevation model, with ALT as a variable. 
In this study we used GTOPO30 (http://edc.usgs.gov/
products/elevation/gtopo30/gtopo30.html), geo-refer-
enced to the datum WGS84 (Figure 1).

3. Results 

Table 1 shows, by month: regression coefficients A, B 
and C; the coefficient of determination (r2); the statis-
tical significance (p); and the standard error g. It may 
be seen that the proposal of the algorithm to describe 
the relation between precipitable water, altitude and 
distance from the coast is significant. In fact, the sta-
tistical significance, on average p< 0.01, indicates that 
the relation between the variables considered is sta-
tistically significant, with a confidence level of 99%. 
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The value of r2 shows that the model used explains, on 
average, 83 % of the variability in precipitable water 
vapour, representing a strong relationship between the 
variables. 

The time variability of coefficients A, B and C of 
equation (1) for the Araucanía Region of Chile are 
shown in Figure 2.

Table 1. Values of coefficients A and B for the regression. PW = A + B • ALT + C • DIL + γ. The statistical values 
of the coefficient of determination, r2, standard error g and statistical significance, p, are also indicated. 

Month A 
(g cm−2)

B x10-5 
(g cm−2 m-1)

C x10-5

(g cm−2 m-1)
g x10-2

(g cm−2) r2 p

January 1.53828 4.4402066 -0.187775 6.6467 0.84 0.0000
February 1.56530 5.0148432 -0.177534 7.0048 0.80 0.0000
March 1.57972 5.2872668 -0.197890 7.4967 0.81 0.0000
April 1.43329 4.9759926 -0.206196 7.3831 0.83 0.0000
May 1.38728 5.1646561 -0.209144 7.5440 0.83 0.0000
June 1.31359 4.6527804 -0.201236 7.3766 0.83 0.0000
July 1.16480 4.2493843 -0.183105 6.5428 0.84 0.0000
August 1.17262 4.1886861 -0.180572 6.3217 0.84 0.0000
September 1.12749 3.9161601 -0.161547 5.8278 0.83 0.0000
October 1.21776 3.7382387 -0.159670 5.7643 0.83 0.0000
November 1.34550 3.6931073 -0.167441 5.9018 0.84 0.0000
December 1.50005 3.9896655 -0.182630 6.3881 0.84 0.0000

Figure 2. Time variability of coefficients A, B and C of regression W = A + B • ALT + C • DIL + γ  in the Araucanía 
Region, Chile.
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In order to obtain categories with uniform values for 
PW, a non-hierarchical cluster analysis was done us-
ing the minimum distance criterion (Perez, 2004). 
This technique allowed pixels with similar precipi-
table water vapour values to be considered in a single 
cluster, while pixels with different values were located 
in other clusters. Figure 3 shows the result of the clus-

ter analysis carried out on the monthly mean values; it 
may be clearly observed that the precipitable water is 
stratified into different zones. These correspond to the 
coastal area, characterised by the Nahuelbuta coastal 
range; the central depression; the Andean pre-cordil-
lera; and the Andes Mountains.

Figure 3. Cluster behaviour zones for precipitable water in the Araucanía Region, Chile.

The result of the cluster analysis in the study area 
shows that precipitable water vapour follows space-
time trends defined at a mean monthly level, which 
are very similar to the Köppen climate classification 
system. This fact is based on the observed dependence 
on geographical position, altitude and, in the case of 
this study area, distance from the coast. The same de-
scriptors are used to model the spatial distribution of 
the climate in the study area, with satisfactory results 
(Díaz et al, 2010). In the study area, water vapour is 
transported primarily from the Pacific Ocean (Mo-
rales et al, 2009).

Table 2 shows the statistics describing each cluster in 
monthly values, with columns for the average (AVG), 
the Range (Wmax – Wmin) (RAN), and the coefficient of 
variation in percentage (CV) of the precipitable water 
for each cluster in the time period considered. 

Figure 4 shows the behaviour of the precipitable 
water for each cluster in the study area. In general 
terms, all the curves follow a similar comportment 
over time, with maximum values concentrated be-
tween January and March. This coincides with maxi-
mum solar radiation at median latitudes in the south-
ern hemisphere, and therefore with a considerable 
increase in evaporation from the Pacific Ocean. 
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In addition, it can be seen that the cluster with the 
greatest precipitable water is cluster 1, the coastal 
zone, while the clusters with intermediate values are 
the central depression and the pre-cordillera. Cluster 

2 equates to the zone with the lowest precipitable wa-
ter content, corresponding to the Andes range in the 
Araucanía Region.

Table 2. Average monthly values (AVG), range (RAN) and coefficient of variation in percentage (CV) of PW for 
each cluster in the period 1989-2010. 

Cluster 1 2 3 4
Statistics AVG RAN CV AVG RAN CV AVG RAN CV AVG RAN CV
JAN 1.493 0.124 2.238 1.113 0.070 1.380 1.240 0.123 2.407 1.358 0.128 2.699
FEB 1.524 0.121 2.080 1.175 0.070 1.214 1.291 0.129 2.065 1.398 0.124 2.386
MAR 1.533 0.133 2.298 1.140 0.076 1.392 1.271 0.138 2.391 1.392 0.136 2.724
APR 1.384 0.136 2.655 0.967 0.077 1.734 1.107 0.134 2.957 1.236 0.139 3.220
MAY 1.338 0.139 2.772 0.917 0.079 1.846 1.057 0.138 3.121 1.187 0.141 3.399
JUN 1.265 0.134 2.833 0.856 0.076 1.936 0.993 0.133 3.254 1.120 0.139 3.499
JUL 1.121 0.122 2.915 0.749 0.069 2.014 0.873 0.121 3.367 0.989 0.126 3.609
AUG 1.129 0.120 2.861 0.762 0.068 1.938 0.885 0.119 3.274 0.999 0.124 3.514
SEP 1.089 0.107 2.651 0.763 0.061 1.727 0.872 0.105 2.934 0.973 0.109 3.209
OCT 1.179 0.106 2.412 0.855 0.060 1.532 0.964 0.105 2.649 1.065 0.109 2.905
NOV 1.305 0.112 2.293 0.962 0.064 1.456 1.077 0.113 2.524 1.184 0.120 2.770
DEC 1.456 0.122 2.247 1.081 0.070 1.423 1.206 0.124 2.449 1.324 0.132 2.708

Figure 4. Variability over time in the monthly mean PW, period 1948-2005.
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4. Conclusions

A linear algorithm relating precipitable water to al-
titude and distance from the coast makes it possible 
to estimate and describe the space-time variability 
of precipitable water. This study, done on a regional 
scale, produced a statistical significance between the 
two variables of p< 0.01, indicating that the relation 
is statistically significant, with confidence level 99%. 

A non-hierarchical cluster analysis, applied to the 
values for precipitable water, allowed the Araucanía 
Region to be stratified into different uniform zones, 
with the highest values of W found in the coastal 
zone, intermediate values in the central depression 
and pre-cordillera, and the lowest in the Andes range.

The proposed model offers an operational solu-
tion for obtaining PW information as a monthly mean 
when no daily information from radio soundings or 
satellite platforms is available. This provides an en-
try variable on which to base atmospheric corrections 
to thermal images, e.g. those supplied by the NOAA 
and TERRA platforms. This allows for applications in 
agricultural sciences when there is a need to estimate 
particular biophysical variables, such as thermal iner-
tia and evapotranspiration, which appear to be closely 
linked to soil surface temperature.
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