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Abstract

Soil moisture determination plays a major role in water and crop management. In this research, the accuracy 
of the Triangle Method (TM) was evaluated to predict surface soil moisture content using Moderate Resolution 
Imaging Spectro-radiometer (MODIS) satellite images with 1km resolution. The investigation was carried 
out within an area of 76 km2 in Lighavn watershed in East Azerbaijan, North West of Iran. The analysis was 
based on ground measurements of soil moisture at 225 points (45 pixels) across the catchment on 2 different 
days. Ground measurements from the first day were used to train the models, while those from the second day 
were used for validation. A range of polynomial regressions from 1st to 4th orders were established between the 
ground measured soil moisture and MODIS Normalized Difference Vegetation Index (NDVI) and Land Surface 
Temperature (LST). The best results were obtained for the 4th order polynomial of the TM with the efficiency 
error (ER) and adjusted determination coefficient (R2

adj) criterions, respectively, equal to 11.0% and 0.63 for 
calibration and 15.9% and 0.60 for validation stage. Therefore, the TM was found to provide reliable estimates 
of soil moisture, without the need for prior information of the soil surface roughness or the vegetation type and 
water content. 
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1. Introduction 

Soil moisture is an important parameter for the 
Soil Water Balance Equation (SWBE) at global, 
regional, and local scales, including quantification 
of its components (infiltration, surface runoff, 
evapotranspiration, and deep percolation), and 
exchanges in the vadose zone (Davenport et al. 

2005). Soil moisture is often referred to as surface 
soil moisture, meaning the water in upper 10 cm 
layer, or root zone soil moisture, meaning the water in 
the upper 100 to 200 cm of soil (Wang and Qu 2009). 
Importantly, soil moisture affects human health and 
plays an important role in agriculture, economic, 
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military, and transportation activities (Serrano 2010). 
Therefore, sustainable agriculture and water resource 
management need accurate information of the surface 
soil moisture. For example, low soil moisture for 
sustained periods results in drought and plant water 
deficit, potentially leading to wild fire (Serrano 2010). 
Conversely, high soil moisture leads to increased risk 
of flood. Moreover, evaporation rate which is strongly 
correlated to soil moisture makes a strong connection 
between land surface and atmosphere (Guo et al. 2005). 
Therefore, information about the spatial patterns of soil 
moisture at regional scale can helps to predict storms, the 
occurrence of frosts and heat waves, and the likelihood 
of limited vision due to thick fog (Serrano 2010). In 
addition to traffic-ability of tanks and visibility for jets, 
soil moisture is important for range of other military 
applications, e.g. the calculation of density altitude for 
determining the lift capacity of aircraft1.
Direct observations of soil moisture are currently 
limited to measurements at specific locations. 
Moreover, such point-based measurements do not 
represent the spatial distribution of soil moisture, 
since it is highly variable both spatially and 
temporally (Engman 1991; Wood et al. 1992). 
However, technological advances in satellite remote 
sensing have offered a variety of approaches (Shi 
et al. 1997, Wen et al. 2003; Das et al. 2008; Van 
doninck et al. 2011) for measuring soil moisture 
across a wide area continuously over time. Empirical 
approaches construct functional relationships between 
measured variables, while the theoretical ones apply 
complicated scattering phenomena from probabilistic 
models of soil, vegetation, and terrain (Ahmad et al.  
2010). Remote sensing, consequently, provides an 
opportunity for routine monitoring of soil moisture 

1*	 -ht tp: / /spectrum.mit .edu/ issue/2010-summer/
measuring-moisture/

across large scales (Wang and Qu, 2009) as well as 
vegetation moisture content (Castro et al. 2014). 
Wang and Qu (2009) have classified techniques for 
the remote sensing of the near-surface soil moisture 
into 1. visible, 2. thermal infrared, and 3. microwave 
techniques. Microwave techniques, including 
radiometer (passive) and radar (active), are currently 
the preferred approaches for soil moisture remote 
sensing due to their all-weather capability and stronger 
relationship with the soil water content. While the more 
easily interpreted radiometer data is coarse and needs to 
be downscaled to be used for many of the applications 
discussed above, the radar data are infrequent through 
time and are very difficult to interpret, primarily due 
to need of ancillary surface roughness and vegetation 
information (Wang and Qu 2009). Although visible 
and thermal infrared are affected by clouds, they have 
fine spatial resolution and can be easier to interpret than 
radar (Wang and Qu 2009). 
The thermal emission has a wavelength region 
between 3.5 and 14 µm (Curran 1985). Remote 
sensing of the surface soil moisture using optical 
data relies on either the use of thermal observations 
alone (Schmugge 1978; Friedl and Davis 1994), or 
in combination with vegetation indices (Chauhan et 
al. 2003). The Triangle Method (TM) is categorized 
as a thermal infrared technique (Wang and Qu 2009), 
and uses both Land Surface Temperature (LST) and 
the Normalized Difference Vegetation Index (NDVI) 
for remote sensing of the surface soil moisture using 
the Moderate Resolution Imaging Spectro-radiometer 
(MODIS) satellite images with 1 km resolution data. 
The TM was first introduced by Price (1990) and 
then elaborated upon by others (Carlson et al. 1994; 
Carlson et al. 1995; Gillies and Carlson 1995; Lambin 
and Ehrlich 1996; Gillies et al. 1997; Owen et al.  
1998; Jiang and Islam 1999, 2001, 2003; Chauhan 
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et al. 2003). The TM method has been verified by 
different investigations (Gillies et al. 1997; Carlson 
2007; Wang et al. 2007; Mekonnen  2009) showing a 
good performance (with R2 varying  between 0.6 and 
1.0) to predict soil moisture.
Due to the encouraging results of the recent 
studies, this paper explores the use of the TM 
method using 1km resolution MODIS data for the 
unique soil, vegetation, and weather conditions in 
North Western Iran. 

2. Theoretical background of the method

The triangle method (Chauhan et al. 2003) is 
classified as a thermal infrared technique for soil 
moisture estimation using remotely sensed data 
(Wang and Qu 2009). It is a stepwise algorithm that 
is performed according to: 1. ground measurement 
of the soil moisture, 2. computation of the NDVI and 
LST from satellite images, 3. scaling the computed 
NDVI and LST to NDVI* and LST*, 4. constructing 
polynomials between the measured soil moisture and 
NDVI* and LST*, and 5. mapping the soil moisture 
using the derived equations. The NDVI* and LST* are 
computed according to:                          ( 1)  (2)

	   

 
		   
where NDVI and LST are the observed values for 
each pixel, and subscripts max and min imply the 
maximum and minimum values, respectively. The 
min and max for the parameters were set to be 
minimum and maximum for the particular pixel 

over the season. Carlson et al. (1994) showed that 
the relationship among soil moisture (M), NDVI*, 
and LST* is expressed through a regression formula 
such as:

(3)

where aij is the regression coefficient and  the 
superscripts i and j imply the degree of the polynomials 
that are chosen for the regression. 

3. Methods and Materials

3.1. Study area

The study was conducted in the Lighvan watershed, 
East Azerbaijan, located in North Western Iran 
(Figure 1). The watershed is located at the Sahand 
Mountain with latitude 37° 43’ 07” to 37° 50’ 08” 
N and longitude 46° 22’ 23” to 46° 28’ 05” E. The 
Lighvan watershed has an area of 7,854 hectares 
and an elevation varying from 3,534m in the 
uplands to 2,190m at the watershed outlet (Figure 
2), with an average precipitation of 320 mm per 
year. Nearly all parts of the study area have coarse 
textured soils at soil surface (0-10 cm) consisting 
of loam, sand, sandy clay loam, sandy loam, and 
silt loam texture classes (Figure 3-A) (Rahmati, 
2014). The major part of the study area consists 
of bare land (46%) and poor pasture (42%) land-
uses (Figure 3-B) (Rahmati, 2014). Irrigated and 
dry-land farming covers only 12% of the area 
(Rahmati, 2014). 

* min

max min

NDVI-NDVINDVI =
NDVI -NDVI

 

* min

max min

LST-LSTLST =
LST -LST
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Figure 1. Location of the study area in East Azerbaijan, Iran

 
 
 
 

Figure 2. DEM and river network map of the study area
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 Figure 3. Soil (A) and landuse (B) maps of the study area

were collected for each pixel and a simple mean was used 
to combine samples to produce an estimate for each pixel. 
Figure 4 indicates the location of the sampled pixels and 
the sampling strategy for each pixel. The Sampling was 
randomly repeated in two different days (11-June-2012 and 
18-June-2012) with the first day’s data used to calibrate the 
polynomials and the second day’s data for validation. No 
rainfall occurred during the period 11-June till 18-June 2012. 

3.2. Field and laboratory experiments

For sampling purposes, the study area was divided into 1 
square kilometer pixels (the same as the MODIS resolution), 
and soil samples were collected from the 0 to 15 cm 
surface layer in each pixel. In total, 225 soil samples were 
taken from 45 out of 60 complete pixels for volumetric 
soil moisture determination. In other words, five samples 

Figure 4. Location of the sampled cells and distribution of sampling points in the study area
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The MODIS sensor is located on the Aqua and Ter-
ra satellites, having both day and night overpasses. 
Aqua and Terra products of MODIS were down-
loaded from the MODIS Adaptive Processing System 
(MODAPS) through Level 3 and Atmosphere Archive 
and Distribution System (LAADS) at http://ladsweb.
nascom.nasa.gov. MODIS/Terra and its official LST 
(MOD11A1) and NDVI (MOD13A2) products were 
selected for analysis in this investigation, due to being 
less cloud affected than Aqua (Mekonnen 2009).
Although, the MODIS data of the study area on 11-
Jun-2012 and 18-Jun-2012 were needed to fulfill this 
research, the data acquired on 9-Jun-2012 and 15-
Jun-2012, respectively, were used due to being cloud 
free. There was no rainfall between days 9 to 11 and 
15 to 18 of Jun-2012 to affect soil moisture content 
significantly. 

3.3.Training and evaluation of the models

In this research, the 1st to 4th order polynomials were 
calibrated for their predictive skill in estimating soil 
moisture by the TM method, using MODIS images 
as input. The ground measurement of soil moisture 
was carried out on two different days, being the 
11th and 18th June 2012. The measured data on 11th 
June were used to calibrate polynomials, while 
data on 18th June 2012 were used for validation. 
The MODIS NDVI and LST products of days 9th and 
15th June 2012 were used instead of 11th and 18th 
June 2012, respectively, since the obtained data of 
11th and 18th June 2012 were cloud affected. In this 
case, we assumed that the measured soil moisture 
on 11th June was correspond for 9th June and those 
measured on 18th June was correspond for 15th 
June due to inconsiderable change in soil moisture 
during one or two days.

3.4. Terrain correction

To check terrain effects due to the large elevation 
difference (around 1200 m) from the uplands to the 
outlet of the catchment, potential temperature (T) 
was required for elevation correction against LST. 
Potential temperature is the temperature that a parcel 
would acquire if adiabatically brought to standard 
reference pressure P0, usually 1013mb (Mekonnen 
2009). Potential temperature can be calculated 
according to (Mekonnen 2009):

(4)

where T is the potential temperature in K, LST is 
the land surface temperature in K, P0 is the standard 
reference pressure usually 1013 mb, and P is the 
atmospheric pressure at the surface in mb, computed 
according to elevation (Z) by:

(5)

where Z (km) was derived from resampling of the 30m 
resolution DEM into the 1km MODIS resolution using 
nearest neighbor resampling method. The computed 
value of T was then scaled using:

(6)

where T is the observed value for each pixel, while 
subscripts max and min imply the maximum and 
minimum values, respectively. Finally, polynomials were 
reconstructed between measured soil moisture and the 
NDVI* and T* information extracted form MODIS data 
to check elevation effects on polynomials evaluation.

http://ladsweb.nascom.nasa.gov
http://ladsweb.nascom.nasa.gov
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3.5.Performance evaluation

Determination coefficient (R2), adjusted determination 
coefficient (R2

adj), Root Mean Square Error (RMSE), 
and evaluating error (ER) criterions were used to 
evaluate the accuracy of the method for soil moisture 
prediction. The RMSE and ER criterions were 
determined by using following equations:  

(7)

 

(8)

where Mi,Sim and Mi,Obs are the simulated and measured 
soil moisture at point i, ObsM is the mean of measured 
soil moisture, and N is the number of measurements. 

4. Results and Discussion

Statistics of the ground measured soil moistures for two 
sampling days are reported in Table 1. There was no rainfall 
event between two sampling days, with and approximately 
0.02 cm3cm-3 decrease in soil moisture accordingly. The 
NDVI and LST maps of the study area on 9th June are 
depicted in Figure 5 and their statistical parameters for both 
sampling days reported in Table 1. According to the Table 
1, the day time average of the LST for 9th and 15th June 2012 
were 288.11 and 277.63K, respectively. Table 1 also reports 
that the average NDVI for sampling days were 0.254.

Figure 5. The NDVI (A) and LST (B) maps of the study area on 9-Jun-2012

Table 1. Statistics of ground measured soil moisture (M), and MODIS LST and NDVI of the study area
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4.2. Polynomials training and evaluating

The Data Solver application of the Microsoft 
Office Excel was used to calibrate the polynomials. 
The following equation shows the expanded form 
of Equation. (3) for the 4th order polynomial used 
in this study:

(9)

 
The results of polynomial evaluation for both calibration 
and validation stages are listed in Table 2. The outcome 
showed that an increase in the order of polynomials 
has resulted in a better prediction of the soil moisture. 
The 4th and 1st order polynomials possess the highest 
(RMSE=0.019 cm3cm-3, ER=11%, and R2

adj=0.63) and 
lowest (RMSE=0.022 cm3cm-3, ER=13%, and R2

adj=0.48) 
accuracies for the calibration stage, respectively. Each 
polynomial consists of (n+1)2 regression coefficients, 
in which n implies the order of the polynomial. So any 
increase in polynomial order results in a higher number of 
regression coefficients. Consequently, the higher number 
of the regression coefficients will require a better training 
for polynomials. Results of the other investigations (e.g. 
Carlson 2007 and Mekonnen 2009) show that the higher 
order the polynomial, the better accuracy of soil moisture 
prediction, which also consistent with this study. The 
best performance for the validation stage (RMSE=0.024 
cm3cm-3, ER=15.85%, and R2

adj=0.60) was also for the 
4th order polynomial. However, results of the 1st, 2nd, and 
3rd orders polynomials showed that measured soil moisture 
had the best correlation with the 3rd  order polynomial 
prediction (R2

adj=0.59 vs. R2
adj=0.02 and R2

adj=0.37), while 
the RMSE and ER criterions had the best agreement with 
the 2nd  (RMSE=0.026 cm3cm-3  and ER=16.96%) and 
1st  (with RMSE=0.034 cm3cm-3  and ER=22.53%) order 
polynomials, with the worst results was for the 3rd order 

polynomial prediction (with RMSE=0.036 cm3cm-3  and 
ER=24%). Consequently, the 4th order polynomial is 
proposed for further investigation in the region. The 
regression coefficients of the 4th order polynomial adopted 
from the calibration stage are reported in Table 3. The 
simulated soil moisture maps using the 4th order polynomial 
are also demonstrated in Figure 6 for both calibration and 
validation stages. Cross correlation of the measured and 
simulated soil moistures using the 4th order of polynomial 
for both calibration and validation stages are depicted in 
Figure 7, showing a satisfying correlation (calibration 
R2=0.840 and validation R2=0.829) with measured data.
Although, the range of the applied data in this research 
is restricted (one small catchment and 2 sampling days), 
the results are encouraging. Gillies et al. (1997) estimated 
soil moisture using TM method and multispectral 
measurements with standard errors of 16 per cent 
compared to measured soil moisture. Wang et al. (2007) 
also executed a 2nd order polynomial of the TM method 
to estimate soil moisture with a wide range of data (using 
93 ground stations data) in eastern China, reporting an 
R2 greater than 0.6 between measured and estimated soil 
moistures for 82 out of 93 ground stations and greater 
than 0.7 for 71 out of 93 ground stations. Mekonnen 
(2009) also applied a 3rd order polynomial of the TM 
method in northwest Ethiopia using a wide range data 
from 9 different days of ground measurement, with an R2 
greater than 0.7 and RMSE of 0.045.
The key advantages of the TM method, although, are its 
independence to surface roughness and applicability 
to pixels with NDVI > 0.4, which is contrary to others 
microwave remote sensing techniques (Mekonnen 
2009), it is expected that applying a wide range of 
ground measurement to train the polynomials will 
result in a better prediction of soil moisture. Carlson 
(2007) confirmed that the most severe limitation of 
the TM method is requiring a flat surface and a large 
number of pixels over an area with a wide range of 
soil wetness and fractional vegetation cover.
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Table 2. The results of polynomial evaluation for both calibration and validation stages

 

Table 3. Regression coefficients (aij) of the 4th order polynomial, where i and j imply the power of the NDVI* and LST* in 

Equation (3), respectively 

 

Figure 6. Simulated soil moisture maps by 4th order polynomial for calibration (9-Jun-2012, A) and validation (15-Jun-2012, B) stages 
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Figure 7. Cross correlation of measured and simulated soil moistures using 4th order polynomial for calibration (9-Jun-2012) 

and validation (15-Jun-2012) stages

(RMSE of 0.033 vs. 0.036 cm3cm-3 and ER of 21.7 vs. 
24.0 %), the other polynomials (1st, 2nd, and 4th orders) 
showed no sensitivity to the substitution of LST by 
potential temperature. Contrary to the results of this 
paper, Mekonnen (2009) showed that the elevation 
correction resulted in better prediction of the soil 
moisture. This is possibly due to small size (≈ 80 km2) 
and reduced elevation variation (1200 m) of the study 
area used here in comparison to his study area (≈ 1768 
km2 and 1900 m).

4.3.Terrain effects evaluation on polynomials

Since the topography of the study area is irregular and 
rough, terrain effects on simulated soil moisture were 
evaluated. Potential surface temperature was used to 
correct the topographic effects on simulated soil moisture. 
The evaluation results of constructed polynomials among 
soil moisture, NDVI*, and T* are reported in Table 4. 
Although applying potential temperature T instead of 
LST resulted in a better validation of 3rd order polynomial 

Table 4. The results of polynomials evaluation after elevation correction on LST using Equation (4)
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5. Conclusion

The 4th order polynomial of the TM method using 
MODIS satellite images was shown to predict the soil 
moisture with R2

adj=0.63, RMSE = 0.019 cm3cm-3, and 
ER = 11% for calibration; R2

adj=0.60, RMSE = 0.024 
cm3cm-3, and ER = 16% for validation. Applying 
potential temperature T instead of LST to correct for 
the terrain effects on the TM method performance 
showed no improvement on the method’s efficiency. 
The good results obtained from the current research 
suggest that the method warrants evaluation at larger 
scale, with more field sampling data across a wider 
range of conditions.   
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