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Abstract

In Colombia, the zone of the greatest agricultural expansion includes soils within the native savanna system. These 
soils are Oxisols, which have a stable structure but are susceptible to physical degradation. The objective of this 
paper was to study the spatial variability of the soil physical properties with the aim of determining management 
units. This study was carried out in the municipality of Puerto Gaitán, Meta, Colombia, in an area of 5100 ha 
where nodes were placed every 320 m in a grid. The samples were taken from the surface (AH) and subsurface (BH) 
horizons in which the texture, pore distribution, saturated hydraulic conductivity (KS), bulk density (BD) and soil 
particle density (PD) were determined. The data analysis was conducted using descriptive statistics, geostatistics 
and multivariate analysis. The predominant textures of the soil were loam and sandy loam. High values of BD, high 
values of microporosity, low presence of mesopores and slow KS were found, which result in physical limitations 
for adequate development of crops. The BD and the total porosity were the properties that best characterized the 
soil and showed the greatest number of significant correlations with the other physical properties. The KS was the 
only property that did not show spatial dependence. Geostatistics allowed the identification of spatial variability 
patterns, estimation of the properties at non-sampled sites, and identification of management units of the properties 
that fit the semivariogram models. Multivariate analysis identified the most representative properties of the soil and 
permitted the establishment of management units.
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1. Introduction

Oxisols are the seventh most common soils in the 
world and occupy an area of approximately 9.61 
million km2. They are found principally in the tropics 
in flat or slightly undulating zones (USDA, 1999), 
and they represent 24.5% of soils. In Latin America, 
Oxisols cover approximately 2.43 million km2 and 
occupy large areas in Brazil, Colombia and Venezuela, 

specifically in zones occupied by natural savannas, 
which are the second largest biome in South America 
(Thomas and Ayarza, 1999).

In Colombia, Oxisols appear in the so-called Llanos 
Orientales (Eastern Plains), which cover more than 20 
million hectares (Phiri et al., 2001) of which more than
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3 million are subjected to mechanized crop 
production. This is the agricultural zone of the 
greatest development during the last decade, and 
its use is passing from extensive cattle raising 
to technified crops, such as rice, corn, soy, palm 
oil, sugar cane, rubber, fruit trees and timber. The 
nutritional requirements for these crops contrast with 
the low fertility of the soil, which makes the use of 
correctives and fertilizers necessary because of its 
low content of interchangeable organic matter, P, 
macronutrients and micronutrients in addition to its 
high acidity (Camacho-Tamayo et al., 2008).

From the physical point of view, these Oxisols 
have a stable structure and natural densification. 
Nevertheless, Oxisols are susceptible to degradation 
once the original condition of the soil is altered 
through farming and planting of crops. Oxisols 
properties can degrade over a period of 5 years if 
conventional tillage is utilized, which in conjunction 
with the high and intense precipitation in the zone 
affects the size of the aggregates, diminishes the 
porous volume and reduces the water flow in the soil 
(Phiri et al., 2001).

The intrinsic variability of soil is due to edaphic and 
climatic factors that influence the biological, physical 
and chemical processes, which act simultaneously 
with differing intensity and are associated with its 
genesis (Malagón, 2003). To determine and evaluate 
the characteristics and processes as well as their 
variability, numerous techniques of soil survey 
and classification have been used. The resulting 
information is represented in maps that show the 
geographic distribution of the soils where regions 
of units are defined using the similar characteristics 
of texture, topography, horizon thickness, nutrient 
level, and slope (Moral et al., 2011). However, the 
properties of soil can vary significantly even in small 
inside areas for the same unit of soil (Nyamangara et 
al., 2013).

A first estimation of the variability of soil can be 
established by means of univariate techniques through 

descriptive measures, such as the mean, maximum 
value, minimum value, mode, or coefficient of 
variation (CV). The use of these techniques has 
limitations because it analyzes the properties of the 
soil individually and does not permit visualizing the 
different interactions between them (Cruz et al., 2011). 
The CV is sensitive to the distance of the sampling and 
to the number of samples with greater distances of the 
sampling resulting in greater values of CV (Garten et 
al., 2007). Moreover, an increasing number of samples 
results in diminished CV values (Dong-Sheng et al., 
2011), which can erroneously lead to declaring low 
variability. Furthermore, CV does not permit defining 
the spatial variability because this technique does 
not provide information about the pattern of spatial 
distribution of a particular property, which makes it 
impossible to establish management units.

Knowing the spatial variability of soil permits a 
better understanding of the complex relationships 
between its characteristics and environmental factors 
(Goovaerts, 1998), and it also helps in determining 
specific management practices for adequate use of 
the soil (Orjuela Matta et al., 2012). Recognition of 
the variability leads to reevaluating the conventional 
soil management in agricultural production, which 
assumes a homogeneous behavior of soil properties 
and uses general recommendations (Tesfahunegn 
et al., 2011). However, it is necessary to consider 
that the determination of the variability requires an 
accurate and reliable sampling to avoid large errors of 
assessment, and it is necessary to carry out sampling 
by means of the identification of groups of interrelated 
soil properties (Peña et al., 2009).

Multivariate analysis allows the identification of the 
relationships among a group of properties or samples 
studied. Principal component and cluster analyses 
are widely used for classification, modeling, and 
evaluation in environmental studies. In the study 
of soil properties, multivariate analysis is a tool 
that allows the characterization of an area and the 
establishment of the interaction with the surroundings 
of each resulting property and group. While it is true 



Management units of an Oxisol

Journal of Soil Science and Plant Nutrition, 2013,13(4),767-785

769

that these techniques do not in themselves allow the 
identification of the spatial distribution of a group of 
samples, they help to classify and group them. With 
this grouping, it is possible to determine areas and 
establish management units allowing appropriate 
uniform management to be carried out within the 
units.

Physical properties play a key role in fertility and 
are a basic component of soil quality (Amézquita et 
al., 2004), and their evaluation has been proposed 
to define specific management units (Cucunubá-
Melo et al., 2011). In particular, soil bulk density 
(BD) influences the porosity and, therefore, the 
movement and storage of fluids (water and air) in 
soil. Particle density (PD) depends on the mineral 
and organic composition of soil because the specific 
crop management and organic materials used can 
lead to noticeable spatial variability. Texture is a 
fundamental physical property with great influence 
on the BD and porosity, and it also affects the heating 
capacity and conductance of soil. Furthermore, clays 
contribute to the stabilization of organic carbon and 
the retention of anions and cations in soil, which 
affect the processes of percolation and the stripping/
retention of nutrients as well as the agrochemicals in 
soil (Godwin and Miller, 2003).

Considering the importance that soils have in the 
eastern plains of Colombia for the immediate future 
for Colombian agricultural production, the aim of the 
present research was to study the spatial variability of 
the physical properties of the dominant soils (Oxisols) 
through the use of geostatistical and multivariate 
analyses to determine soil management units.

2. Materials and Methods

2.1. Locality and characterization of the study area

The study was carried out in the Carimagua 
Experimental Station located in the municipality of 

Puerto Gaitán, Meta, Colombia with geographical 
coordinates of 4° 37’ N and 71° 19’ W and at an 
average altitude of 175 m (Figure 1). The zone has 
a slightly undulating relief with slopes between 2 
and 5%, and the zone is covered with native savanna 
(used for more than 30 years for extensive cattle 
raising). Moreover, the zone has a sub-humid tropical 
climate with an average temperature of 27.8 °C and 
an average annual precipitation of 2,240 mm, which 
is concentrated between the months of April and 
November. The predominant soils of the zone are 
highly fertilized Oxisols, which are strongly acidic 
(pH < 5) and have low organic matter contents. The 
soil under study belongs to the Carimagua-Tomo 
complex with taxonomic components of Typic 
Haplustox and Tropectic Haplustox.

2.2.  Field sampling and laboratory analysis

The sampling was carried out in an area of 
approximately 5,100 ha between the months of 
February and June in 2010. A grid design was used 
with sampling points distributed perpendicularly 
every 320 m for a total of 470 points. Each point was 
georeferenced with a GPS (approximation of ±1 m), 
and the sampling of the soil was carried out on surface 
horizon (AH) and subsurface horizon (BH) for a total 
of 940 samples. At each point and horizon, disturbed 
samples were taken for the determination of soil 
particle density (PD) using the pycnometer method 
and sand content using the Bouyoucos method. 
Additionally, an undisturbed sample was taken with 
a ring of 50 mm in height and 50 mm in diameter to 
determine the saturated hydraulic conductivity (KS; 
using the constant head well permeameter method), 
bulk density (BD), saturation points (PS; 0 bar), field 
capacity (FC; 0.1 bar) and permanent wilting point 
(PWP; 15 bar) on ceramic pressure plate extractors. 
On the basis of these determinations, the total 
porosity (TP) and the distribution of the macropores 
(MAP), mesopores (MEP) and micropores (MIP) were 
established.
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2.3. Data processing and statistical analysis

With the results of the laboratory analysis for the 
properties mentioned, an initial exploratory study of the 
data was carried out to calculate measures of placement 
(mean, median, minimum, and maximum), variability 
(coefficient of variation; CV) and form (skewness 
and kurtosis). Thus, the supposition of normality was 
empirically evaluated, which, while not indispensable, 
gives better predictions when geostatistical (Diggle 
and Ribeiro, 2000) and multivariate techniques are 
used. For the CV analysis, the Warrick and Nielsen 
(1980) classification was considered, which indicates 
low variability for values less than 12%, medium 
variability for values between 12 and 60%, and high 
variability for values greater than 60%.

To identify the properties that best characterize 
the horizons of the soil, principal components 
(PC) analysis was carried out. PC analysis reduces 
the dimensionality and shows the different basic 
components, which are called principal components. 
Each principal component is described in terms 
of new components, which are defined based on a 

linear combination of the original variables. The first 
component, which is associated with the greatest 
eigenvalue, represents the maximum value of the 
total of the variance, and the second component is the 
second linear combination and is not correlated with 
the first component, which represents the maximum 
residual variance, and so on until the total variance is 
accounted. In general, a small number of components 
explain a high percentage of the total variance, so 
the entire set of data can be described in a smaller 
dimensional space. To facilitate the interpretation of 
each component in this study, Varimax rotation was 
applied after previously standardizing the values with 
a mean zero (0) and variance unit (1). The exploratory 
study of the data and the multivariate statistical 
analysis were carried out using the SPSS v.20 program 
(SPSS Inc., Chicago, IL, USA).

The experimental semivariograms of the properties 
under consideration were then calculated. This analysis 
assumes that the values of a property separated by 
small distances are more similar than those located 
at greater distances. The function of the experimental 
semivariogram y(h) is defined by Equation (1) as 
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where Z(x) is the value of the variable at site x; Z(x+h) 
is an additional sampling value separated from the first 
by a distance h; and N(h) is the number of pairs that are 
separated by h. The function of the semivariogram is 
calculated for various distances (h). In practice, due to 
the irregularity of the sampling, distance intervals ([0, 
h], [h, 2h], [2h, 3h],…) are taken, and the experimental 
semivariogram corresponds to an average distance 
between pairs of sites within each interval and not to 
a specific distance (h). The solution of the problem of 
prediction in geostatistics requires knowledge of the 
structure of spatial autocorrelation for any possible 
distance between sites within the area under study. 
Thus, the fit to the models that determine the value of 
the semivariogram for any distance is necessary.

There are diverse theoretical models of semivariance 
that can be fit to the experimental semivariogram. 
Webster and Oliver (2007) discussed the characteristics 
and conditions with which theoretical models must 
satisfy. In general, such models can be divided into 
unbounded (linear, logarithmic and potential) and 
bounded (spherical, exponential and Gaussian). All 
of these models have three parameters in common, 
which are the nugget (C0), sill (C0+C1) and range (a). 
The nugget effect indicates the discontinuity between 
the samples, so the spatial variability is not detected 
during the sampling process. The sill is the value of 
the semivariance where the model stabilizes, thereby 
exhibiting a constant value. The range represents the 
distance to which a spatial correlation exists, thereby 
indicating that there is no longer any correlation between 
the samples. In the present study, bounded models were 
employed to fit the experimental semivariograms. The 
spherical model is defined as follows:

γ (h) = C0 + C1*[1.5*(h/a) – 0.5*(h/a)³] for 0 < h < a 
y γ(h) = C0 + C1 for h > a. The exponential model is 
defined as follows: γ (h) = C0 + C1*[1 – e(-3h/a)] for 0 
< h < d; where d is the maximum distance at which 

the semivariogram is defined. The Gaussian model is 
defined as follows: γ (h) = C0 + C1*[1-e(-3h²/a²)].

Once the model of best fit for each property was 
established, the degree of spatial dependence (DSD) 
was verified through the relationship between the 
nugget and sill (C1/C0+C1). The DSD is classified as 
follows: strong if it is greater than 75%; moderate if 
it is between 25 and 75%; and weak if it is less than 
25% (Cambardella, 1994). It is important that the 
nugget is not greater than 50% of the value of the 
sill so that the spatial correlation model will describe 
reality well (Cressie, 1993). In the other cases, the 
noise in the measurements would explain to a greater 
extent the spatial variability than the correlation of 
the phenomenon. In these cases, the model fit to the 
experimental semivariogram is called the nugget effect 
(Goovaerts, 1998) and is defined as follows: γ (h) = C0 

for h > 0.

For the geostatistical analysis, GS+ v.9 software 
(Gamma Design Software, LLC, Plainwell, MI, 
USA) was used. This software allowed the selection 
of the theoretical semivariogram models on the basis 
of the least value of the sum of the residual squares, 
the coefficient of determination (R2) of the fitting 
equation and the similar values obtained between the 
real value and the estimated value obtained in the cross 
validation.

On the basis of the semivariogram models of the 
properties that expressed spatial dependence, the 
interpolation by the ordinary kriging method was 
performed, which is considered to be the best linear 
unbiased estimator of minimum variance (Diggle and 
Ribeiro, 2000) for making predictions at non-sampled 
sites. The results are shown by means of contour maps. 
This procedure was carried out with the Surfer v.10 
program (Golden Software Inc., Golden, CO, USA). 
Furthermore, a linear correlation was established to 
determine the relationship between the properties, 
which can be visually verified on contour maps when 
they are significant.
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To identify the management units, three methods were 
used. The first method was cluster analysis (CA), 
and the second and third methods were estimated on 
the basis of a soil index (SI) by means of principal 
component analysis (PC) and coefficient of variation 
(CV), respectively. In the CA, the results obtained 
from each property were included, and all sites of the 
sampling (observations of cases) were considered. The 
CA allowed the identification of observation groups 
that had some similarities between them. The difference 
among the groups is a distance measure. In the present 
study, the Euclidian distance was used to separate a 
set of sampled points into groups, and the results are 
shown in the form of a graph (dendogram) to facilitate 
the identification of the groups formed by the analyzed 
samples to ultimately establish homogeneous units. 
The results were obtained using the Ward algorithm, 
which calculates the distance of the sum of the squares 
between two groups, which extends along all points. 
At each estimate, the sum of the squares between the 
groups is minimized along all segmentations by fusion 
of the two groups previously estimated. In general, 
this method is considered to be efficient, but it creates 
groups of small dimensions (Ferreira, 2011).

According to Ortega and Santibañez (2007), a SI 
corresponds to a linear combination of the properties 
of the selected soil where the weight of each property 
is chosen, so the difference (variation) among the 
sampling points is maximized according to Equation 
(2) as follows:

where SIZ is the soil index in position z of the sampling 
and wi is the weight of the standardized variable Piz 
in position z of the sampling. This SI is a continuous 
variable formed by the properties of the soil that can 
be classified and delimited with a representation on a 
map. The weights for each variable can be arbitrary or 
can be determined mathematically.

For the PC, an SI can be obtained on the basis of the 
variance of each component (wi) and the factor score 

(Piz).  In this case, the definition of the management 
units of the soils can be conducted through the 
consideration of percentiles, quartiles, or the average 
and its relation to the standard deviation for which 
it is convenient to know the zone under study and 
the spatial behavior of the soil properties. These 
management units will show a high correspondence of 
correlation with several of the properties, principally 
with those that are found in the first PC. According to 
the variance of the PCs, it is possible to also show a 
high correspondence with the properties immersed in 
the other principal components.

For the SI based on the CV, it is assumed that the 
properties that show a greater variability in the field, 
as expressed through the coefficient of variation (CV), 
have greater weight in a linear model that combines 
all of the soil properties for estimating a soil index 
(Equation 2). For this analysis, the standardized 
values in the CP and the values of CV obtained in 
the exploratory data analysis were taken. The relative 
weight of each variable was obtained using Equation 
(3) as follows:

where wi is the weight of variable i; and CVi is the 
coefficient of variation of variable i.

Once the management units for each method were 
identified, maps of the management units for each 
horizon were drawn through triangulation with linear 
interpolation. Finally, correlations between the units 
and each property were estimated to establish their 
correspondence and influence on the management units.

3. Results and Discussion

3.1. Descriptive analysis

According to the sand content, loam textures prevailed 
with the predominance of fine particles in the two 
horizons (Table 1) as was also reported for the zone by
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Molina et al. (2003). The bulk density (BD) and soil 
particle density (PD) showed values and ranges typical 
for these Oxisols in the native savanna (Phiri et al., 
2001) and indicated natural processes of densification, 
which affected the presence of macropores (MAP) and 
mesopores (MEP) as well as the saturated hydraulic 
conductivity (KS).

The KS showed values less than that of loamy soils 
according to Clapp and Homberger (1978). These 
KSvalues indicated that the water flow was slow in the 
two horizons. However, there were some places in the 
two horizons with moderate KS values but with some 
restrictions of water flow. Despite observing that the 
TP was less in the BH, the KS was slightly greater in 
this horizon than in the AH due to the greater presence 
of MAP and MEP, which indicated a greater water 
storage capacity in this horizon as well as a greater 
range of water available to the plants. The behavior of 
the KS and the greater presence of MIP on the surface 
suggested that the natural process of densification 
in addition to being stepped on by cattle affected 

Table 1. Descriptive analysis of soil properties in the Carimagua Experimental Station.

this property. The TP oscillated between 37.85 and 
56.25% for the AH with an average of 47.58%, which 
were values similar to those reported by Phiri et 
al. (2001) for native savanna on recent intervened 
soils. These ranges were similar for the BH with less 
predominance of MIP.

According to Warrick and Nielsen (1980), the KS 

showed high variability for the two horizons, which 
is a property that does not fit with a symmetric 
distribution, as verified by comparing the mean and 
median as well as by the skewness and kurtosis 
values (Table 1). In general, KS is a property that 
shows high variability (Cucunubá-Melo et al., 2011), 
especially at the surface level or in highly intervened 
soils (Zimmermann and Elsenbeer, 2008). Sand, 
MAP and MEP showed medium variability for the two 
horizons. The MIP and TP showed low variability in 
the two horizons similar to the BD and PD, which are 
properties that help to define the porous space of soil. 
In general, soil particles, BD and PD present low or 
medium variability (Peña et al., 2009).
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With the exception of KS, the mean and median values 
were similar for the other properties, which indicated 
symmetric distributions, as confirmed by the values 
close to zero for skewness and kurtosis, thereby 
empirically corroborating the precept of normality. 
More importantly than normality, one should verify that 
the normal distribution does not show any elongated 
tails because they can compromise the results that are

obtained based on the observed data (Cressie, 1993), 
especially when interpolation with kriging is carried 
out, which is a method that bases the estimations on 
mean values (Warrick and Nielsen, 1980). Another 
important element to verify is the occurrence of the 
proportional effect between the mean and variance 
of the samples in space because this effect allows the 
estimation of sills defined in semivariogram models.

Table 2. Coefficients of the first four principal components (PCs) obtained using Varimax rotation for the soil 
physical properties.

Loading factors higher than 0.6 (absolute value) are shown in bold.
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3.2. Analysis of the properties by principal components

In the two horizons, the principal components (PCs) 
were analyzed with an eigenvalue greater than one 
(1) to include an adequate interval. As reflected in the 
accumulated variance, the first four PC explained more 
than 75% of the total variance (Table 2). For the AH and 
BH, the coefficients of the MAP and PD components as 
well as the communality value were verified as being 
low, which indicated that these properties had scarce 
correlation with the other attributes as well as low 
representation in the principal components analyzed. 
Thus, these properties were considered to not be 
representative for characterizing the soil under study.

The PC analysis was similar for the two horizons. The 
properties that stood out most for each component were 
the same for PC1 and PC2, and the components showed 
accumulated variances with similar values in the two 
horizons. The first PC incorporated 32.31 and 28.98% 
of the variance for the AH and BH, respectively, and the 
MAP, TP, and BD were the properties that best represented 
this component. The coefficient values of these 
properties showed that BD was inversely related to TP.

The PC2 showed a variance of 17.54 and 20.74% for 
the AH and BH, respectively, and the properties that best 
defined this component were MEP and MIP. The third 
and fourth components showed the properties that 
had the least influence on the variance, thus indicating 
that the properties that should be least considered 
for characterizing the soil, including KS and the sand 
content for the two horizons and BD for the AH. These 
results indicated that it is convenient to consider first 
the TP and BD for the two horizons followed by MEP and 
MIP for the discrimination of the management units of 
the horizons.

3.3. Spatial behavior of the properties

The only property that did not fit to the theoretical 
semivariogram models in the two horizons was KS, 
which is a property that showed a random distribution 
and independence in its spatial behavior (Table 3),and

this result correlated with the high variability observed 
in the CV. Various reports have demonstrated the 
spatial independence of KS (Cucunubá-Melo et al., 
2011; Jiménez et al., 2011) because it is affected by 
the BD, soil particles, pore size and pore continuity. For 
the other properties, the predominant model was the 
exponential model followed by the spherical model for 
the two horizons. Sand showed the lowest coefficient 
of determination (R2) in the two horizons with values of 
0.68 for the AH and 0.62 for the BH. In turn, MIP was the 
property with the highest R2 for the two horizons. These 
R2 values together with the cross validation coefficient 
(CVC) values close to one (1) for the properties that 
showed a fit to the theoretical semivariogram models 
indicated an adequate reliability in the estimation of 
the data in the non-sampled zones as estimated through 
kriging (Cucunubá et al., 2011).

The properties that showed a strong degree of spatial 
dependence (DSD) fit the exponential model where 
the BD was the only property that showed this behavior 
in the two horizons and the only one in the AH. For 
the BH, the TP and PD also followed this behavior. 
These properties in common showed a low CV (Table 
1), which although it is not a necessary condition, 
upon carrying out the correlation between CV and 
DSD of the set of properties that showed a fit with 
the theoretical semivariogram models, values of 
-0.13 for the AH and -0.50 for the BH were obtained, 
thereby indicating an inverse correlation. With the 
exception of the MEP and MIP, greater values of DSD 
were observed for the properties in the BH, which was 
due to the lesser effect of the external antropic agents. 
According to Cambardella et al. (1994), a strong DSD 
in soil properties can be attributed to intrinsic factors 
(parental material, relief, weather, organisms and 
time), and a weak DSD can be attributed to extrinsic 
factors (fertilization, soil intervention, machinery 
traffic, pasturing and irrigation).

The property that showed the largest range in the two 
horizons was MAP with values greater than 8,000 m, 
and the attribute with the smallest range was BD for 
the AH (Table 3).  
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Table 3. Parameters of the theoretical semivariogram models of soil physical properties.

CVC, cross validation coefficient; NE, nugget effect.

The other properties showed ranges greater than 1,000 
m. This behavior verified that the distance chosen 
for the sampling was adequate (320 m) because it 
allowed the definition of the spatial dependence of 
the properties with the exception of KS, which is a 
parameter for which it would be convenient to use 
a lesser distance or a nested system of sampling to 
verify whether a defined spatial dependency exists 
for properties that show random distribution when 
the sampling is carried out with a grid as proposed 
by Lin et al. (2005). In contrast, the ranges observed 
were smaller at the maximum distance between 
sampling points (close to 16,300 m), thereby 
fulfilling the criteria of the regionalized variables 
theory (Webster and Oliver, 2007). This condition 
is of special importance because the range provides 
information for the crop management and evaluation 
of experiments as well as information about the 
genesis and evolution of the soils in the landscape 
and limits between textural classes.

3.4. Linear correlation and kriging

The KS showed a positive correlation with the TP and 
an inverse one with the BD in the two horizons, which 
indicated the influence of these two properties on 
the movement of the water in the soil (Table 4). The 
BD and TP properties showed the greatest number of 
significant correlations with the other properties for 
the two horizons, which correlated with the principal 
component analysis (Table 2), in turn, allowing the 
visualization of the importance of these properties in 
the characterization of the soils.

The MAP showed a positive correlation with the TP 

and a negative one with the BD. Similarly, a negative 
correlation existed between BD and TP. These 
results were verified visually with the contour maps 
obtained by kriging where zones with high TP or MAP 

corresponded to zones of low BD (Figure 2). Similarly, 
the negative correlation found in the analysis of the
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*p ≤ 0.05; ** p ≤ 0.01.; ns not significant.

Table 4. Pearson correlation for soil physical properties.

correlation between the MEP and MIP in each horizon was 
reflected in the contour maps where zones of high MEP 
corresponded to zones of low MIP (Figure 2).  Another 
important factor to consider based on the spatial 
variability of the BD, TP, and MEP is the relationship 
with water storage in the soil and the availability of 
water for plants.This relationship highlights the need to 
establish management units that are conducive to soil 
preparation, drainage works, or localized risk according

to the crop requirements and the time of year the 
farming is carried out. The PD showed few significant 
correlations with the other properties in the two 
horizons, which affirmed the results found in the 
PC analysis because this property did not have any 
representation in the components analyzed. The 
greatest influence of the PD was on the MEP, which had 
a low negative correlation that was barely perceptible 
in the contour maps (Figures 2 and 3).
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Figure 2. Contour maps obtained by ordinary kriging for macropores (a-b), mesopores (c-d), micropores (e-f) and 
total porosity (g-h) in the A and B horizons (left and right, respectively).
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Figure 3. Contour maps obtained by ordinary kriging for bulk density (a-b), particle density (c-d) and sand (e-f) in 
the A and B horizons (left and right, respectively).

3.5. Management units and its relation to soil physical 
properties

Cluster analysis (CA) allowed definition of the units 
through the grouping of the sampling points that 
showed similarities based on the physical properties 
analyzed for each horizon (Figure 4). In this analysis, 
four homogenous units were defined for the AH and 
BH. With the aim of defining an equal number of 
units for the maps obtained using the soil indexes 
determined based on principal components (SIPC) 
and the coefficient of variation (SICV), the units were 
differentiated using the mean and standard  deviation,

which is a methodology considered appropriate by 
Ortega and Santibáñez (2007).

When comparing the maps obtained by the different 
proposed techniques, a greater similarity existed 
between the maps generated on the basis of cluster 
analysis and SIPC with respect to the SICV (Figures 
5 and 6). This difference was because the SICV was 
principally affected by the properties that showed a 
larger coefficient of variation, such as KS, which is a 
property that did not show an important contribution 
in the first two principal components in addition to low 
correlations with the other properties.
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Figure 4. Cluster dendrograms for identifying management units in the AH and BH horizons.

Figure 5. Management units defined for the A horizon from (a) cluster analysis and soil indices obtained from (b) 
principal components and (c) coefficient of variation.
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Figure 6. Management units defined for the B horizon from (a) cluster analysis and soil indices obtained from (b) 
principal components and (c) coefficient of variation.

The correlations among the management units and 
soil properties showed a high relationship with the 
principal component analysis results where the 
properties of the greatest representation in the first two 
PCs corresponded to the greatest correlations (Table 5), 
and the largest coefficients of correlation between the 
properties and management units were observed using 
the SIPC method for both horizons. The TP, which 
was the property that showed the largest coefficient in 
CP1, was the property that had the greatest correlation 
with the management units, except for SICV in the 

AH, where KS showed the largest coefficient due to its 
high CV value analyzed above. In contrast, the least 
representative property in the management units was 
PD, except in the SICV method.

When the maps of the horizon management units 
were visually compared, the four units were similar 
in the AH and BH (Figures 5 and 6). This similarity 
allowed recommendations for each unit to be 
formulated considering the management of the two 
horizons conjunctly according to the crop that is to 
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be established, especially in the labor of farming 
where the physical properties of the soil are markedly 
affected, thereby affecting movement of water and air. 

While it is true that the units showed different areas 
according to the method through which they were 
determined, characteristics directly related to the soil 
properties existed, which was observed by comparing 
the contour maps (Figures 2 and 3) with the 
management units. Unit 1 in both horizons showed 
the greatest sand content, the lowest value of TP, the 
lowest value of MAP, and the highest BD. According to 
these conditions, Unit 1 had the greatest limitation for 
plant root development and water flow in the soil. In 
general, Unit 1 was the unit with the greatest physical 
limitations.

Unit 2 was characterized by a lower quantity of MEP 

and a higher number of MIP, which are properties that 
limit the quantity of water available to plants.

Table 5. Coefficients of correlation between management units and physical properties on the basis of cluster 
analysis (CA) in addition to the soil indexes obtained through principal components (PCs) and the coefficient of 
variation (CV).

In this unit, the lowest KS was found in the AH, which 
is a behavior that restricts the ingress and movement 
of water in the soil, especially toward the BH where the 
largest values of KS existed. While it is true that Unit 
2 presented fewer restrictions than Unit 1, its principal 
limitation was the scarce presence of MEP. Unit 3 
showed fewer physical restrictions for the two horizons 
with low values of KS, greater presence of MEP, higher 
values of TP, as well as lower BD and intermediate sand 
content. With respect to its physical characteristics, Unit 
3 was only surpassed by Unit 4 in both horizons, which 
was the unit with the lowest area in the estimations of 
the management units obtained by the three methods. 
Unit 4 had the greatest TP with values greater than 50% 
for the AH and BH. With respect to the other units, Unit 
4 showed a larger quantity of MEP in the BH, which also 
indicated that Unit 4 was the zone with the greatest 
water storage capacity and the greatest percentage of 
water available to plants. Similarly, this zone had the 
lowest values for BD and PD.
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4. Conclusions

Soils in the native savanna of the eastern plains showed 
physical limitations because of natural processes of 
densification, as indicated by the high bulk density 
values and predominance of microporosity in the soil, 
which restrict the movement of water and air, in turn, 
affecting the development of plants. These physical 
limitations vary in space and can be identified through 
different properties, which are generally correlated 
among the properties and follow a spatial pattern where 
some have a greater influence or prevalence in the soil.

The properties that showed the greatest number of 
significant correlations were also those with the 
greatest expression in the principal component 
analysis and, in turn, those that showed the greatest 
spatial correspondence with the management units, as 
observed among the maps drawn for the management 
units and those obtained by kriging for the properties 
that were fit to semivariogram models.

The study of soil physical properties using geostatistics 
and multivariate analysis helps characterize soil. 
Geostatistics identifies the patterns of spatial variability, 
estimates the properties at non-sampled sites and 
identifies the management units with a reduced group of 
properties, thus allowing properties with less expensive 
and more economical sampling and laboratory analysis 
techniques to be chosen and optimizing the costs of 
sampling and definition of management units.
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