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Abstract

With respect to four inorganic and organic substrates - tezontle (volcanic rock), per-
lite, peat and coir - we studied the relevant physical and chemical properties of mix-
tures of two of these substrates. A nonlinear regression model was used to analyse 
the physical properties of each possible mixture. Finally, a methodology is proposed 
for formulating mixtures of substrates as a deterministic nonlinear mathematical 
programming problem.
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1. Introduction

Soil serves as a support for plants and is the medium 
from which they obtain water, mineral substances and 
oxygen, which are essential for growth and vegetative 
development. An ideal soil has a porosity and particle 
disposition that enables root penetration while retain-
ing appropriate amounts of water and air [Foth and 
Ellis (1988), Hablin et al. (1999), and Russell (2008)].

However, such soils may not be available, and 
then artificial soils may be used. This is the case of 
most flowerpot and containerised crops. Such plants 
have limited root growth, but they still need nutrients, 
air and water. For this reason, artificial substrates are 
sometimes required. These are often obtained by mix-
tures of various products, and the combination of the 
characteristics of each component provides the overall 
(and hopefully, optimal) characteristics of the substrate 
[Resh (2002a), Resh (2002b) and Russell (2008)].

The apparent density of a substrate should be low, 
so that the roots can penetrate it easily, and at the same 
time, to minimise the weight of the containerised 
crops. Organic matter has high porosity, ionic inter-
change and water retention capabilities, together with 
low density. All these properties are recommended for 
a substrate, which explains why most artificial sub-
strates are essentially composed of organic matter; the 
remaining components are usually constituted of nat-
ural minerals or of artificial minerals such as tezontle, 
sand, perlite or vermiculite. These mineral products 
are very porous, with a high real density and a very 
low apparent density. In general, the grain size of an 
artificial substrate is higher than that of the soil, which 
facilitates air infiltration; at the same time, however, 
this property reduces water retention. This consider-
ation explains why mixtures are usually composed of 
both organic and mineral substances, to achieve an 
equilibrium between air infiltration and water reten-
tion [Resh (2002a), Resh (2002b) and Russell (2008)].

The chemical properties of a substrate are important 
because they are the main factors responsible for the 
availability of nutrients. However, new crops are in-
creasingly being constituted in such a way that the 
physical properties of a substrate prevail as its desired 
characteristics, with all the additional plant necessi-
ties being provided by nutritive substances, which 
are permanently available, being recycled to the plant 
by the irrigation system [Hablin et al. (1999), Resh 
(2002b) and Russell (2008)].

In many countries, substrates are still obtained by 
traditional trial and error methods; mixtures are for-
mulated by arbitrarily establishing the proportions of 
the respective components, and the resulting mixture 
is then accepted if it improves the overall crop yield. 
The resulting mixture is not necessarily the optimal 
one, as the method does not explore all the possible 
combinations of the available components. The time 
employed in evaluating the mixtures, the cost of the 
materials used and the search for optimal resources 
are among the aspects contributing to the complex-
ity of substrate formulation, given the number of 
variables involved in the problem (Zamora Morales  
et al. 2005).

Linear programming is a commonly-used em-
pirical technique for formulating substrate mixtures 
used in a soli-less culture, and generally provides 
good approximations (Burés et al. (1988), Burés 
(1997) and Zamora Morales et al. (2005), among 
many others). However, most authors accept that the 
constraints imposed in the linear programming are 
not completely suitable, because they are established 
over design variables which do not present a linear 
behaviour.

This paper proposes a general methodology, 
based on nonlinear regression models and nonlinear 
mathematical programming, for obtaining substrate 
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mixtures for soil-less culture comprised of two inor-
ganic or organic substrates, to be used for protected 
and containerised crops. For this purpose, we study 
the physical and chemical properties of four inorganic 
and organic substrates - tezontle (volcanic rock), per-
lite, peat and coir - together with those of the mixtures 
comprising different proportions of two of these four 
substrates, see Section 2.

Subsequently, the physical properties of the mix-
tures are modelled by nonlinear regression models, 
according to the respective substrate proportions in 
each mixture, see Section 3. These models are then 
used to replace the linear restrictions correspond-
ing to the physical properties expressed in the linear 
mathematical programming problem; thus, we obtain 
a nonlinear mathematical programming solution. 
The corresponding linear and nonlinear problems are 
solved, compared and analysed using the commercial 
software LINGO.

2.	 Physical and chemical properties of 
substrates and mixtures

Four substrates were used in the mixture formulation 
tests: perlite, tezontle, peat and coir. Following the 
methodology proposed by Pire and Pereira (2003), 
Gabriel et al. (1993) and North Carolina State Uni-
versity (2007), we determined, in triple analysis, the 
following physical and chemical properties: total po-
rous space (TPS), air porosity (AP), humidity reten-
tion (HR), apparent density (AD), real density (RD), 
ashes(A), organic matter (OM), pH and electric con-
ductivity (EC), which are shown in Table 1.

We also formulated six mixtures (denoted by 
 
a 

M1 - M6 and defined in Tables 2 and 3) composed of 
two substrates with eleven different proportions. Us-
ing the above-mentioned procedure, their physical 
and chemical properties to be used in the formulation 
of mixtures of substrates were determined (Burés et 
al., 1988); see Tables 2 and 3.

Table 1. Physical and chemical properties of each substrate

Substrate TPS AP HR AD RD A OM pH EC
 % % % gcc-1 gcc-1 % % dSm-1

Perlite 62.40 5.43 56.97 0.19 0.51 100 0 7.6 1.3
Tezontle 50.70 7.81 42.89 1.17 2.36 100 0 8.0 1.3
Peat 72.65 8.38 64.27 0.07 0.28 10 90 6.4 1.2
Coir 81.83 4.48 77.35 0.09 0.49 10 90 7.2 3.7

 

Table 2. Physical and chemical properties of the mixtures

M1 = Perlite + Coir M2 = Perlite + peat  M3 = Perlite + Tezontle
 TPS HR OM TPS HR OM TPS HR OM

% % % % % % % % %

 0%+100% 81.83 77.35 90 72.65 64.27 90 50.70 42.89 0
10%+90% 84.77 81.06 70 77.23 66.66 90 51.77 47.20 0
20%+80% 85.34 79.34 50 85.17 75.46 70 54.17 50.46 0
30%+70% 82.86 77.71 40 84.80 74.51 50 51.91 50.20 0
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M1 = Perlite + Coir M2 = Perlite + peat  M3 = Perlite + Tezontle
 TPS HR OM TPS HR OM TPS HR OM

% % % % % % % % %

40%+60% 76.06 71.49 30 82.77 75.63 60 50.31 48.60 0
50%+50% 73.29 69.86 30 79.60 75.60 40 51.80 49.80 0
60%+40% 72.69 69.83 20 79.00 73.86 40 55.54 53.26 0
70%+30% 67.20 63.20 20 71.20 68.06 20 58.43 53.29 0
80%+20% 64.83 63.40 10 67.51 64.66 20 57.89 54.74 0
90%+10% 66.11 64.11 0 63.49 60.63 10 59.89 57.03 0
100%+0% 62.40 56.97 0 62.40 56.97 0 62.40 56.97 0

 Table 3. Physical and chemical properties

M4 = peat + Tezontle M5 = Coir + Tezontle M6 = peat + Coir
 TPS HR OM TPS HR OM TPS HR OM

% % % % % % % % %
 0%+100% 50.7 42.89 0 50.7 42.89 0 81.83 77.35 90
10%+90% 51.23 49.8 0 48.43 46.71 10 83.74 76.89 90
20%+80% 53.45 51.74 0 51.89 50.17 10 82.46 76.17 90
30%+70% 52.91 50.91 0 54.77 53.34 10 65.23 57.51 90
40%+60% 58.99 56.71 10 59.29 57.86 10 65.31 59.03 90
50%+50% 61.39 59.39 10 62.29 60.86 10 75.89 68.46 90
60%+40% 65.45 62.88 0 64.2 62.2 20 60.43 51.86 90
70%+30% 66.57 62.85 20 69,17 67,17 20 63.54 56.4 90
80%+20% 67.17 62.88 20 72.8 70.23 20 77.94 63.09 90
90%+10% 73.62 67.62 30 76.8 73.66 30 74.11 51.54 90
100%+0% 72.65 64.27 90 81.83 77.35 90 72.65 64.27 90

3. Modelling the physical and chemical 
properties of the mixtures

As remarked above, in general the physical and 
chemical properties of substrates (and their mixtures) 
do not present a linear behaviour. In this section, we 
study the functional behaviour of the physical prop-
erties TPS, HR and OM in the mixtures M1 – M6 

1. 

1	 The interest in this particular modelling is de-
tailed in Section 4.

The results were obtained by the implementation of 
a program in S-PLUS (Lam (2011)) to fit the differ-
ent nonlinear regression models. The least squares 
method was applied to the following fitting models:
•	 Linear regression model 

Continued...
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•	 Polynomial regression model 

•	 Reciprocal regression model 

•	 Logarithmic regression model 

•	 Exponential regression model 

The best model was selected by means of the mini-
mum mean square error criterion (Graybill and Iyer 
(1994)).
In general, the models fitted take the form 

where Y is the mixture variable to be modelled (TPS, 
HR or OM); f (x1, x2) is the functional form of the 
model to be fitted; x1, x2 denote the proportions of 
two of the substrates(selected from perlite, tezon-
tle, peat and coir) making up the mixture, where 

 and ξ is the error. Note also that  
x1, x2   satisfy x1+ x2 =1 which means that x1 and 
x2 are linearly dependent, moreover, x1 = 1 - x2  or  
x2 = 1 - x1 . A priori, all that is necessay is to fit 
a model in terms of x1 (or x2). However, in this 
study we wish to obtain a mathematical model for 
computing the physical property Y of the mixture, 
when the proportions and the individual physical 

properties of the corresponding component of the 
substrate are known. This model is then used in 
the nonlinear optimisation program formulation. 
Strictly speaking, we do not estimate the mod-
el for any possible value of x1 and x2, but rather, 
in the subspace defined by the line x1 + x2 = 1.  
A possible drawback is the fact that few experimen-
tal points (eleven) are used for fitting the TPS, HR 
and OM characteristic models (see Tables 2-3). For-
tunately, the experimental data present a smooth be-
haviour, and, most importantly, they provide informa-
tion over the whole domain of x1 and x2 (specifically, 
the domain is the line x1 + x2 = 1 in the first octant 
of R3). Moreover, it is important to take into account 
that models of the form    
(with р0 ≠ 0), or similar should not be considered, 
because when x1 = x2 = 0 we obtain Υ = р0 , but the 
correct result is Υ = 0. Finally, the most complicated 
aspect of this study is to propose the same functional 
form for each characteristic (TPS, HR and OM) and 
for all the possible mixtures obtained.

As shown in Tables 2-3, the variable OM presents 
a linear behaviour. Then, we just need to determine 
the behaviour of TPS and HR. In both cases, a well 
fitted model for TPS and HR for the six mixtures has 
the form

(1)

where Zk = dx
k
 , k = 1,2, and d denotes the individual 

TPS or HR mixture component of the k -th substrate, 
respectively.

Tables 4 and 5 show the parameter estimator 
values of the model (1) and the corresponding mean 
square of the error (MSE) for the six samples M1 - M6 
with the TPS and HR characteristics, respectively.
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Table 4. Estimators of the model parameters and the mean square of the error for Y = TPS

Mixture  1 2 3 4 5 6
MSE

 М1 1.005 1.205 1.298e-2 -2.308e-3 -7.254e-4 8.008e-6 2.872
М2 0.996 1.092 1.833e-2 -1.289e-3 -2.861e-4 -5.947e-7 3.253
М3 0.992 0.718 1.037e-2 6.549e-3 -6.196e-4 9.648e-6 3.147
М4 0.996 1.092 1.834e-2 -1.288e-3 -2.861e-4 -5.947e-7 3.253
М5 1.004 0.493 -6.566e-3 1.378e-2 4.878e-4 -5.443e-6 0.899
М6 0.998 1.214 -0.110 1.126e-2 2.968e-3 2.047e-5 52.71

 Table 5. Estimators of the model parameters and the mean square of the error for Y = HR

 Mixture 1 2 3 4 5 6 MSE
 М1 1.007 1.354 1.312e-2 -3.917e-3 -1.016e-3 1.530e-5 4.069
 М2 1.002 1.106 1.509e-2 -1.715e-3 -1.668e-5 -3.681e-6 3.051
 М3 0.998 0.7463 2.623e-2 6.815e-3 -1.239e-3 1.847e-5 1.364
 М4 1.005 5.744e-1 1.893e-2 1.338e-2 -2.936e-4 5.125e-6 5.087
 М5 1.001 4.061e-1 1.294e-2 2.099e-2 -1.521e-5 -3.200e-7 0.605
 М6 9.548e-1 1.184 -1.674e-3 -2.002e-3 -5.358e-4 5.536e-6 66.074

 
As shown in Tables 8 and 9, the mixture M6 has the 
poorest fit. However, note that the functional form of 
a particular physical characteristic modelled must be 
the same for all mixtures.

As an example, we include in Figure 1 the graphs of 
the estimated model and the experimental points for 
the TPS characteristic of mixture M1

 

Figure 1. Graphs of the estimated model and the observed TPS data for the mixture М1.
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4. Formulation of mixtures by nonlinear 
mathematical programming

We consider the hypothesis proposed by Zamora Mo-
rales et al. (2005) as the basis for our formulation of the 
nonlinear mathematical programming problem. Since 
the mixture would essentially be used as a support, 
where the plant receives the nutrients via nutritious 
solutions, we only consider the physical properties as 
the design variables, except the variable OM, which is 
an important representative of the substrate’s chemical 
properties and is therefore incorporated into the general 
model. In addition, we wish to achieve optimum control 
of the chemical properties of the nutritious solutions.

Taking these considerations into account, we study 
the following design variables: the balance of volumes, 
OM, TPS and HR. The minimising objective function 
is the cost of the mixture, which is studied via linear 
functions of the substrate proportions in the mixtures 
and their individual costs. A basic problem type takes 

the form (2), where Ck  is the cost in dollars per litre of 
the k -th substrate (perlite: 0.073, tezontle: 0.218, peat: 
0.21 and coir: 0.106); xk denotes the proportion in litres 
of the k -th substrate; mk 

is the OM percentage per litre 
of the k -th substrate; ek 

is the TPS percentage per litre 
of the k -th substrate and Ck is the HR percentage per 
litre of the k -th substrate. Now, OMs and OMi are limits 
or levels of the upper and lower restrictions for OM, 
respectively. In this study, we consider the limits (0-45) 
and (46-90); similarly, we define the upper and lower 
limits for TPS and HR, establishing the following two 
levels: (55-70) and (71-86) for TPS, and (45-60) and 
(61-76) for HR. These intervals or levels of restriction, 
for each of the variables OM, TPS and HR, were estab-
lished following the recommendations of Abad et al. 
(1988), for substrates used in a soil-less culture and 
considering labeling specifications for commercial sus-
trates. Finally, the respective  were obtained from 
Table 5.
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Potentially, if we combined the four substrates in the 
two-substrate mixtures 4C2 with all the possible combi-
nations of the two upper and lower levels for OM, TPS 
and HR (23), we would have 48=6×8 possible mixtures. 
However, Table 6 shows only the mixtures selected 
by linear or nonlinear mathematical programming. In 
other words, mixtures for which neither a linear nor a 
nonlinear optimisation program present a feasible re-
gion (i.e. the corresponding optimisation program has 
no solution) have been removed from Table 10, leav-
ing only the substrate mixtures for soil-less culture 
with a feasible solution, as either a linear or a nonlinear 
optimisation program. In cases where the mixture of 
substrates has no feasible solution in the linear or non-
linear optimisation program, this is noted as NF (there 

is no feasible solution to the optimisation problem). In 
addition, the restrictions to the coded variables OM, 
TPS and HR are coded by assigning “1” to the range 
with the smaller values and “2” to the higher range.

The results were computed using the commercial 
software Hyper LINGO/PC, release 6.0 (Winston, 
1995). The default optimisation method used by LIN-
GO to solve the nonlinear mathematical programming 
is that of Generalised Reduced Gradient (GRG) (Ba-
zaraa et al. 2006). As can be seen, the linear program-
ming reduces the total of mixtures by 66.66%, while 
the nonlinear mathematical programming reduces 
them by 68.75%; thus, both methods reduce the num-
ber of mixtures by very similar amounts. However, 
note the following two aspects:

Table 6. Mixtures of substrates via nonlinear mathematical programming

Restriction level Solution with  
Linear programming

Solution with  
Nonlinear programming

OM TPS HR x1 x2 x1 x2

% % % %
Perlite-coir
1 1 1 100 0 100 0
1 1 2 80.2 19.8 94.0 6.0
1 2 2 55.7 44.3 57.8 42.2
2 2 2 48.8 51.2 48.8 51.2
Coir-tezontle
1 1 1 49.6 50.4 48.9 51.1
2 1 2 62.0 38.0 73.5 26.5
2 2 2 96.1 3.9 96.3 3.7
Perlite-peat
1 1 1 100 0 100 0
1 1 2 NF 88.2 11.8
1 2 2 NF 71.9 28.1
2 1 2 44.8 55.2 NF
2 2 2 15.7 84.3 48.9 51.1



Journal of Soil Science and Plant Nutrition, 2012, 12 (1), 87-97

95Use of nonlinear regression and nonlinear mathematical programming 

Restriction level Solution with  
Linear programming

Solution with  
Nonlinear programming

OM TPS HR x1 x2 x1 x2

% % % %
Perlite-tezontle
1 1 1 100 0 NF
2 1 1 100 0 NF
Peat-coir
2 2 2 10.3 89.7 0 100
Peat-tezontle
1 1 1 50 50 47.9 52.1
1 1 2 NF 50 50
2 1 1 80 20 NF
2 1 2 87.9 12.1 69.7 30.3
2 2 2 100 0 NF

a)	 The mixture substrate proportions assigned by the 
two techniques can vary significantly, as can be 
seen, for example, in peat-tezontle with restriction 
levels 2 1 2.

b)	 Linear mathematical programming is a useful 
and widely used tool in mixture problems, how-
ever, in general the nonlinear programming model 
achieves a better mixture formulation. But, if a 
user insists in using a linear solution, he/she could 
face two situations: One, is that the optimal linear 
solution might not be feasible under the nonlinear 
model, and second, that the optimal linear solu-
tion might be suboptimal with the respect to the 
nonlinear solution. Thus, from a practical point of 
view, the interpretation of these results would be 
that on occasions non-feasible substrate mixtures 
used in a soil-less culture are tested or produced, 
which results in a waste of research time and/or 
money. Worse still, when linear programming 
leads us to reject a mixture that would have been 
accepted by the nonlinear method, we might be 
rejecting the best possible mixture. 

5. Conclusions

The aim of this study is to propose a general method-
ology which can be applied to various situations, with 
only simple modifications. For example, a mixture 
formulation in the absence of nutritive substances, or 
one comprised of substrates that are rich in nutrients 
and artificial nutrition, could be studied by modify-
ing nonlinear mathematical programming, through 
restrictions on chemical properties and/or via alterna-
tive objective functions.

Alternatively, the presence in the mixture of cer-
tain undesirable (desirable) ions or cations could be 
minimised (maximised). This methodology could be 
extended to the simultaneous optimisation of several 
objective functions; for example, to minimise the cost 
and to maximise the amount of nitrogen in a mixture, 
which implies the use of nonlinear multiobjective op-
timisation methods (Steuer, 1986).

Note that the procedure described in Section 3 can 
be used for modelling various kinds of physical and 
chemical properties of the mixtures. In addition, the 

Continued...
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nonlinear mathematical programming approach can 
be adapted by adding new restrictions and/or objec-
tive functions for a particular characteristic.

Finally, note that there are few experimental 
points and a large number of parameters. Neverthe-
less, on the one hand, we have a sample of equally–
spaced experimental points throughout the domain of 
the variables x1 and  x2 (i.e. the line x1 + x2 = 1), and 
the mathematical behaviour considered is a smoother 
of these variables. Furthermore, our aim is to obtain 
the best mathematical approximation possible to these 
points and thus obtain the best results.

A potential user of this methodology (e.g. the 
commercial producer of a protected crop) could con-
sider using a greater number of experimental points, 
taking into account the higher initial investment that 
would be required.
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