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Abstract  

Many eucalypt species are difficult to propagate as rooted cuttings. The mineral nutrition of cuttings is a key factor 
that limits adventitious root induction but little is known about partitioning of nutrients by eucalypt stock plants. 
This study determined N, P, K, Ca, B, S, Mg, Mn, Zn, Al, Fe and Na concentrations in the root system, pruned 
hedge and harvested cuttings of stock plants of the eucalypt, Corymbia citriodora. Between 17% and 31% of total 
plant mass was collected as cuttings at each harvest. The mobile nutrients, N, K and S, were highly concentrated in 
the cuttings and were removed in high amounts (e.g. 27–46% of total plant N) at each harvest, whereas less-mobile 
nutrients such as Ca and Zn were less concentrated in the cuttings than other plant parts. Adventitious rooting 
of eucalypt cuttings has been related to B concentration but this study revealed that B was much more highly 
concentrated in the hedge than the cuttings. Management of N and K concentrations for shoot production, and B 
concentrations for adventitious rooting, may be critical for sustaining rooted cutting production by C. citriodora.
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1. Introduction

The cuttings of some eucalypt species from riparian or 
high-rainfall habitats have a high capacity for forming 
adventitious roots (Wendling and Xavier, 2005; Saya 
et al., 2008; Goulart et al., 2011) but most plantation 
eucalypts are considered difficult to propagate from 
cuttings (Assis et al., 2004; Brondani et al., 2011, 
2012a; Kilkenny et al., 2012). Difficulties with clonal 
propagation of woody plants have often been overcome 
by developing improved methods for managing their 
nursery stock plants and treating their harvested 

cuttings (Leakey, 2004 ; Pohio et al., 2005; Wendling 
et al., 2010; Majada et al., 2011). Mineral nutrition of 
cuttings is one of the key factors that limit adventitious 
rooting (Blazich, 1988; Xavier et al., 2009). However, 
in the absence of foliar fertilization, the nutritional 
status of cuttings is primarily determined by the 
nutritional status of the stock plant because there may 
be little nutrient uptake through the cut stump of 
cuttings before roots are formed (Grange and Loach, 
1983; Blazich, 1988; Santos et al., 2009).
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One hypothesis for low adventitious rooting in 
subtropical eucalypts has been that Ca uptake into 
the young shoots of stock plants is limited when 
temperatures are suboptimal, and that root formation is 
correlated with Ca concentration (Assis et al., 2004). 
Subsequent studies have found that lowering the stock 
plant temperature does not affect the Ca concentration, 
and that rooting is usually not correlated with Ca 
concentration,in cuttings of three subtropical eucalypt 
species, Corymbia citriodora, Eucalyptus cloeziana 
and E. dunnii (Trueman et al., 2013a, b). However, 
adventitious root induction is consistently correlated 
with B concentration in cuttings of all three of these 
species (Trueman et al., 2013a, b) and it is often 
correlated with B concentration in clones of E. grandis 
× E.urophylla (Cunha et al., 2009a, b). Rooting is 
also correlated with N, P and K concentrations in 
E. cloeziana, and with P and K concentrations in C. 
citriodora, but it is not correlated with concentrations 
of these macronutrients in E. dunnii, E. grandis, E. 
grandis × E.urophylla or E. urophylla (Cunha et al., 
2009a, b; Trueman et al., 2013a, b). The partitioning of 
nutrients among the roots, pruned hedge and cuttings 
of stock plants has been described recently for E. 
urophylla (Neto et al., 2012) but, otherwise, little is 
known about the uptake and distribution of nutrients 
by eucalypt stock plants, despite their importance 
for determining the nutrient status and adventitious 
rooting potential of cuttings.

This study determined the distribution of N, P, K, Ca, 
B, S, Mg, Mn, Zn, Al, Fe and Na among the roots, the 
pruned hedge and the cuttings of C. citriodora stock 
plants. The aim was to reveal mobile nutrients that 
are lost from the stock plant at high rates during each 
harvest of cuttings and less-mobile nutrients that might 
not be transported to the young shoots in sufficient 
quantities to ensure high adventitious rooting. The 
study species is grown widely for its timber, pulp 
and essential oils (Dillon et al., 2012; Dickinson et 
al., 2013; Gbenou et al., 2013) but it is considered 
difficult to propagate as rooted cuttings (Shepherd et 
al., 2007; Trueman and Richardson, 2008; Trueman 
et al., 2013a). The results of this study will assist in 

developing fertilization strategies for sustainable shoot 
production and rooted cutting production by stock 
plants of C. citriodora. 

2. Materials and Methods

The stock plants harvested in this study were a 
subsample of those used in the adventitious rooting 
study of Trueman et al. (2013a). Briefly, stock 
plants of C. citriodora subsp. variegata were raised 
in a glasshouse in Gympie (26°11’S, 152°40’E) 
by sowing seeds in January 2009 in potting mix 
consisting of a 75/25 (v/v) mixture of shredded 
pine bark and perlite, with 3kg of 8-9 month slow 
release Osmocote TM  fertiliser (Scotts International, 
Heerlen, The Netherlands), 3kg of lime (Unimin, 
Lilydale, Australia), 1kg of gypsum (Queensland 
Organics, Narangba, Australia), 1kg of Micromax TM 
granular micronutrients and 1kg of Hydroflo TM soil 
wetting agent (both from Scotts Australia, Baulkham 
Hills, Australia) incorporated per m3. The N, P and 
K contents of the Osmocote fertiliser were 16.0%, 
1.3% and 9.1% (w/w), respectively, and the pH of the 
potting mix was approximately 6.5.The seedlings were 
transplanted in February 2009 into 2.8L pots filled with 
the same potting mix, and then transferred randomly 
into four controlled-temperature glasshouse chambers 
in Nambour (26°38’S, 152°56’E). Temperatures in all 
chambers were set at 28°C/23 °C (day/night; 0600-
1800 h/1800-0600 h, respectively). Irradiance was 
reported by Trueman et al. (2013a).

The seedlings were managed as hedged stock plants, 
commencing in April 2009, by pruning (i.e. hedging) 
at 3-week intervals to a height of ~30 cm and a canopy 
diameter of ~20 cm. The temperatures in three of 
the chambers were changed randomly on 15 June 
2009 to provide four temperatures across the four 
chambers:18 °C/13 °C, 23 °C/18 °C, 28 °C/23 °C 
and 33 °C/28 °C (day/night). This date was regarded 
as the commencement of the experiment, consistent 
with the terminology in Trueman et al. (2013a, b). 

978



 Nutrient partitioning in Corymbia

Journal of Soil Science and Plant Nutrition, 2013, 13 (4), 977-989

Temperatures and their corresponding stock plants 
were relocated randomly to different chambers every 
4 weeks to minimise the effects of chamber.

Cuttings were harvested from all stock plants at 2, 
5, 8, 11 and 14 weeks after commencement of the 
experiment (Trueman et al., 2013a). For the current 
study, three stock plants from each temperature(18 
°C/13 °C, 23 °C/18 °C, 28 °C/23 °C and 33°C/28 °C) 
were destructively sampled at 2, 8 and 14 weeks (i.e. 
12 stock plants on each sample date). All available 
cuttings were collected directly from each stock 
plant, and each stock plant was dissected into five 
complete parts: roots (R), hedge stems (HS), hedge 
leaves (HL), cutting stems (CS) and cutting leaves 
(CL). The roots were rinsed gently in water to remove 
adhering potting mix. The five plant parts were placed 
in separate paper bags, dried for 7 d at 65 °C, weighed, 
and ground using a Retsch MM200 tissue homogeniser 
(Retsch, Haan, Germany). The concentrations of N 
and S in each sample were determined by combustion 
analysis (McGeehan and Naylor, 1988; Rayment 
and Higginson, 1992) using a LECO CNS 2000. 
The concentrations of P, K, Al, B, Ca, Fe, Mg, Mn, 
Na and Zn were determined by inductively coupled 
plasma – atomic emission spectroscopy (Munter and 
Grande, 1981) after nitric and perchloric acid digestion 
(Martinie and Schilt, 1976).

Dry mass, nutrient concentrations and nutrient contents 
were analysed by 2-way ANOVA, comparing the five 
plant parts and four temperatures within each harvest 
date. Two-way ANOVA was used because extensive 
interactions between harvest date and the other 
factors (plant part and chamber temperature) were 
detected by 3-way ANOVA but temperature effects 
and interactions between plant part and temperature 
were generally not significant in the 2-way ANOVAs. 
Post-hoc least significant difference (LSD) tests were 
performed only when significant differences were 
detected by ANOVA. Data were square root or log 
transformed when variance was heterogeneous. Means 
are reported with standard errors, and mean differences 
or interactions were regarded as significant at p < 0.05.

Figure 1. Dry mass partitioning among the roots (R), 
hedge stems (HS), cutting stems (CS), hedge leaves 
(HL) and cutting leaves (CL) of Corymbia citriodora 
stock plants at three harvest dates (2, 8 and 14 weeks 
after commencement of the experiment). Means (+ 
s.e.) with different letters within a harvest date are 
significantly different (ANOVA and LSD test, p< 0.05, 
n = 12)

3. Results and Discussion

Much of the stem mass in C. citriodora stock plants 
was located in the main frame work of the hedge 
(HS) rather than in the cuttings (CS), whereas leaf 
mass was distributed almost equally between the 
hedge (HL) and the cuttings (CL) (Figure 1). Root 
mass (R) increased during the experiment but the 
mass of available cuttings (CS + CL) declined at 
the final harvest date, as shown previously from the 
more-extensive harvests of cuttings from 18–24 stock 
plants (Trueman et al., 2013a). Between 17% and 31% 
of total plant mass was collected as cuttings at each 
harvest, with this percentage declining during the 
experiment (Table 1). These percentages were similar 
to those from the cuttings of E. urophylla stock plants 
(~18–25%) across a range of N application rates 
(Neto et al., 2012).
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Table 1. Biomass and nutrient losses (as percentages 
of whole-plant biomass or nutrient content) due to the 
harvest of cuttings from Corymbia citriodora stock 
plants at three sample times after commencement of 
the experiment.

Means are provided with SE (n = 12)

Nitrogen was most concentrated in the hedge leaves 
and cutting leaves (HL and CL) and least concentrated 
in the stems of the hedge (HS) (Figure 2a), so that 
between 32 ± 4 and 88 ± 7 mg of N (CS + CL) was lost 
from the stock plant during each harvest of cuttings 
(Figure 2b). Phosphorus concentration varied little 
within the plant (Figure 2c) and so the allocation of 
P (Figure 2d) reflected the allocation of dry mass to 
different parts of the stock plant (Figure 1; Table 1). 
Potassium was most concentrated in the leaves (HL 
and CL) and the cutting stems (CS) (Figure 2e), and 
stock plants lost between 33 ± 5 and 78 ± 9 mg of 
K (CS + CL) at each harvest (Figure 2f). Therefore, 

disproportionately high amounts of total plant N (27–
46%) and K (26–42%) were removed at each harvest 
(Table 1). These nutrients are highly mobile and are 
often concentrated in growing tissues such as young 
shoots (Karley and White, 2009; Li et al., 2010). Much 
greater percentages of total plant N (~75–86%) are 
removed during the harvest of E. urophylla cuttings, 
which also lose disproportionately high amounts of 
total plant P (~33–56%) and K (~30–43%) at each 
harvest (Neto et al., 2012). Replacement of these 
mobile macronutrients may be critical for sustained 
stock plant growth as well as for root formation by 
cuttings, since adventitious rooting has been correlated 
with P and K concentrations in the cuttings of C. 
citriodora (Trueman et al., 2013a) and with N, P and K 
concentrations in E. cloeziana (Trueman et al., 2013b). 
However, rooting percentages are not correlated with 
N, P and K concentrations in the cuttings of E. dunnii, 
E. grandis, E. grandis × E.urophylla and E. urophylla 
(Cunha et al., 2009 a, b; Trueman et al., 2013a).

Calcium concentrations were much higher in the roots (R) 
and the hedge (HS and HL) than in the cuttings (CS and 
CL) (Figure 3a). Therefore, Ca loss through the harvest 
of cuttings (Figure 3b) was lower as a proportion of the 
plant’s total nutrient content than it was for N, P and K 
(Figures 2b, 2d, 2f; Table 1). In fact, disproportionately 
low amounts of Ca (8–20%) were lost through the 
harvest of cuttings (Table 1) in contrast with high losses 
(~24–43%) observed with E. urophylla (Neto et al., 
2012). Ca is considered an immobile nutrient that tends 
to be retained at high levels in mature and senescing 
organs (McLaughlin and Wimmer, 1999; Karley and 
White, 2009). Its relatively low concentration in C. 
citriodora cuttings (CL: 0.73± 0.07% to 0.79± 0.07%; 
Figure 3a) could be a cause of reported low rooting 
percentages in this species (Shepherd et al., 2007; 
Trueman and Richardson, 2008; Trueman et al., 2013a). 
No correlation has been found between Ca concentration 
and rooting percentage in C. citriodora across a 
concentration range in whole cuttings of 0.57% to 1.12% 
(Trueman et al., 2013a) or in studies with E. cloeziana, 
E. dunnii, E. grandis × E.urophylla and E. urophylla 
(Cunha et al., 2009 a, b) Trueman et al.,  2013a, b). 
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Figure 2. N, P and K partitioning among the roots (R), hedge stems (HS), cutting stems (CS), hedge leaves 
(HL) and cutting leaves (CL) of Corymbia citriodora stock plants at three harvest dates (2, 8 and 14 weeks after 
commencement of the experiment). Means (+ s.e.) with different letters within a harvest date are significantly 
different (ANOVA and LSD test, p < 0.05, n = 12)

However, the Ca concentrations in C. citriodora 
cuttings in these studies were much lower than 
concentrations in the current hedge leaves (1.90 ± 
0.11% to 2.00 ± 0.16%; Figure 3a), and so there may 
be scope to improve adventitious rooting if Ca levels in 
the upper shoots can be increased greatly using foliar 
fertilizers, Ca supplements such as lime or gypsum, or 
optimised climatic regimes that increase Ca mobility.

Boron was more highly concentrated in the hedge 
leaves (HL) than the cutting leaves (CL) or other plant 

parts (R, HS and CS) (Figure 3c), resulting in much 
of the B content of the stock plant being confined to 
the hedge (HL and HS; Figure 3d). The proportion of 
total plant B removed through the harvest of cuttings 
(15–31%) reflected the biomass allocation to cuttings 
(Table 1), as it did during the harvest of cuttings from 
E. urophylla (Neto et al., 2012). B is an immobile 
nutrient in many plant species where sucrose is the 
primary photoassimilate, but it is mobile in species 
that contain polyols such as sorbitol and mannitol 
(Miwa et al., 2009; Lehto et al., 2010)
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Figure 3. Ca, B and S partitioning among the roots (R), hedge stems (HS), cutting stems (CS), hedge leaves 
(HL) and cutting leaves (CL) of Corymbia citriodora stock plants at three harvest dates (2, 8 and 14 weeks after 
commencement of the experiment). Means (+ s.e.) with different letters within a harvest date are significantly 
different (ANOVA and LSD test, p < 0.05, n = 12)

E. grandis and E. grandis × E. urophylla are rich in 
sorbitol and mannitol (Leite et al., 2008, 2010), and 
B appears to be mobile in E. grandis × E. urophylla 
(Mattiello et al., 2009). Consistent relationships 
between B concentration and rooting percentage have 
been found in cuttings of C. citriodora, E. cloeziana 
and E. dunnii (Trueman et al., 2013a, b), and rooting 
percentages in three E. grandis × E. urophylla clones 

have been related to the concentration of B but not 
N, P, K or Ca (Cunha et al.,2009a, b). The effect of 
manipulating B concentration independently of other 
nutrients has rarely been assessed for adventitious 
root formation (Josten and Kutschera, 1999; Li et 
al., 2009; Xavier et al., 2009) but there appears to be 
great potential to improve rooted cutting production by 
increasing B levels in the young leaves of stock plants
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(i.e. in the cuttings). Boron can be supplied to stock plants 
as boric acid (H3BO3), borax (Na2B4O7·10H2O), other 
sodium borates such as Na2B4O7·5H2O, or through less-
soluble sources such as colemanite (Ca2B6O11·5H2O), 
ulexite   (NaCaB5O9·8H2O)  or  hydroboracite

(CaMgB6O11·6H2O) that provide a more-prolonged 
release (Byers et al., 2001; Fageria et al., 2009). 
Supplementation with boric acid increases stock plant 
survival, shoot production and shoot quality in E. 
benthamii (Brondani et al., 2012b).   

Figure 4. Mg, Mn and Zn partitioning among the roots (R), hedge stems (HS), cutting stems (CS), hedge leaves 
(HL) and cutting leaves (CL) of Corymbia citriodora stock plants at three harvest dates (2, 8 and 14 weeks after 
commencement of the experiment). Means (+ s.e.) with different letters within a harvest date are significantly 
different (ANOVA and LSD test, p < 0.05, n = 12)

983



Trueman et al.

Journal of Soil Science and Plant Nutrition, 2013, 13 (4),977-989

Figure 5.  Al, Fe and Na partitioning among the roots (R), hedge stems (HS), cutting stems (CS), hedge leaves 
(HL) and cutting leaves (CL) of Corymbia citriodora stock plants at three harvest dates (2, 8 and 14 weeks after 
commencement of the experiment). Means (+ s.e.) with different letters within a harvest date are significantly 
different (ANOVA and LSD test, p < 0.05, n = 12)

Sulphur was also concentrated most highly in the 
leaves (Figures 3e, 3f), but with little or no difference 
in S concentration between the hedge leaves (HL) 
and cutting leaves (CL) (Figures 3e). Magnesium 
and manganese were concentrated most highly in the 
hedge leaves (HL) and, on some occasions, the cutting 
leaves (CL) (Figures 4a–d). 

Zinc was concentrated most highly in the hedge 
leaves (HL) and the roots (R) (Figures  4e, 4f). 
Disproportionately high amounts of total plant S (22–
44%) were removed from the stock plant as cuttings 
(Table 1), but S removal was not as high as the amount 
harvested (~74–84% of total plant S) in the cuttings of 
E. urophylla (Neto et al., 2012). Removals of Mg and 
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Mn in cuttings were in proportion to the removal of 
biomass, while low proportions of total plant Zn (12–
21%) were in the cuttings (Table 1), similar to the low 
proportions (~8–12%) found in E. urophylla cuttings 
(Neto et al., 2012). S and Mg are mobile nutrients 
that are often highly concentrated in young leaves 
(Hawkesford and De Kok, 2006; Karley and White, 
2009; Maathuis, 2009). Mn is immobile in many 
species andis often highly concentrated in older leaves 
(Dučic et al., 2006; Page et al., 2006, 2012) including 
those of eucalypts, which are often considered as Mn 
accumulators (Hill et al., 2001; Jobbágy and Jackson, 
2004). Zn mobility is considered to be intermediate 
between highly mobile elements such as K and P and 
immobile elements such as Ca, but Zn is often highly 
concentrated in roots and older leaves (Page and 
Feller, 2005; Ivanov et al., 2011). Rooting percentages 
have been positively correlated with Zn concentrations 
in the cuttings of three E. grandis × E. urophylla 
clones (Cunha et al., 2009b) but not in C. citriodora, 
E. cloeziana, E. dunnii, E. grandis or E. urophylla 
(Cunha et al., 2009 a, b; Trueman et al., 2013a, b). 
However, the Zn concentrations in E. grandis × E. 
urophylla cuttings (36–45 mg/kg) were much lower 
than those in C. citriodora (Figure 4e).

Aluminium, iron and sodium were concentrated more 
highly in the roots (R) than in any of the above-ground 
plant parts, so that most of the Al, Fe and Na content 
of the plant was contained within the roots and only a 
low proportion was within the cuttings (Figure 5). The 
proportion (6–21%) of total plant Fe in the cuttings 
(Table 1) was similar to the low proportion (9–15%) 
in E. urophylla cuttings (Neto et al., 2012). Fe is 
an actively-transported nutrient that is required for 
photosynthesis and mitochondrial respiration (Hänsch 
and Mendel, 2009; Puig and Peñarrubia, 2009) but is 
often concentrated most highly in the roots (Gomes et 
al., 2012; Neto et al., 2012). Al is also concentrated in 
roots and returned to the soil through a variety of efflux 
mechanisms, but some plants immobilize Al in the 
root symplast external to the endodermis (Vázquez, 
2002; Nguyen et al., 2005; Zheng et al., 2005). Na 
is also concentrated in the roots and excluded from 

reaching the shoots of many species to maintain high 
photosynthetic rates (Hauser and Horie, 2010; Edelstein 
et al., 2011). Rooting percentages are generally not 
correlated with Fe concentration in eucalypt cuttings 
(Cunha et al., 2009 a, b; Trueman et al., 2013a, b), but 
rooting has been correlated positively with Na and Al 
concentrations in the cuttings of C. citriodora and E. 
dunnii, respectively (Trueman et al., 2013a).

4. Conclusion	

This study has revealed the partitioning of biomass 
and nutrients among the roots, hedge and cuttings of 
Corymbia stock plants. Between 17% and 31% of total 
plant mass was harvested from the stock plants at each 
collection of cuttings, but some mobile nutrients (N, 
K and S) were highly concentrated in the cuttings and 
were disproportionately lost from the stock plant during 
each harvest of cuttings. More-immobile elements 
(Ca and Zn) were less concentrated in the cuttings 
than other parts of the stock plant. Importantly, B was 
more highly concentrated in leaves of the hedge than 
in leaves of the cuttings. Short-term management of B 
concentration in cuttings and longer-term management 
of the N and K supply to stock plants may be critical 
for sustaining high levels of rooted cutting production 
by C. citriodora and other eucalypt species.
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