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Abstract

Crop models are sensitivi by the climatic spatial scale  for performing thesimulation. Several crop simulation studies 
use mesoescale climate database (20-50 km), where topography is neglected. We develop a method to select the 
optimal climate grid cell resolution (OCGR) based on winter wheat (Triticum aestivum L) yield simulations in 
complex topographical zones (CTZ) and flat topographical zones (FTZ) in the Araucanía Region of Chile (37°35’ and 
39°37’ S - 73º31´ and 71.31´ W). The OCGR was estimated from the simulated crop yield (CERES-DSSAT) using 
a semivariogram to compute the distance, which minimize yield differences with respect to its neighbors. Climate 
variables were obtained from DGF-PRECIS (25 km) downscaled to a fine resolution of 1 km through Precipitation 
characterization with Auto-Searched Orographic and Atmospheric (PCASOA). Climate variables were calibrated and 
validated from 56 in-situ meteorological stations between 1961 and 1991 and the yield was validated from field 
experiments. The crop simulation presented no significant differences (3.0±0.3–3.0±0.1 Mg ha-1) compared to field 
experiments. Increasing the resolution improves the crop simulation reducing the RSME from 0.8 to 0.32 Mg ha-1 The 
OCGR estimated averaged < 7 km for CTZ, whereas it was > 25 km for FTZ. Our approach can be applied for similar 
crops and complex topographical zones.
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1. Introduction

Crop yield estimation using mesoscale (grid cell of 
20-50 km) data (e.g. CRU; New et al., 1999;  GCCP; 
Huffman et al., 1997; DGF-PRECIS, Fuenzalida et al., 
2006) have been used to study local responses from 
crop simulation models (Hansen et al., 2006). Database 
from mesoscale models have also been used to feed crop 
simulation models and evaluate different management 
practices (irrigation protocols and dynamics of pest 

and diseases) (Cooley et al.,  2005) and overall climate 
change impacts on agriculture (Jara, 2013; Tan and 
Shibasaky, 2003; White et al., 2011).

To capture the climate spatial heterogeneity for high 
resolution (< 1 km) modelling is not an easy task, 
because we need a high resolution database. This is 
achieved when a dense network of meteorological 
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stations (Mitchel and Jones, 2005), or high resolution 
climate grids (~1 km) (Baron et al., 2005; Mearns 
et al., 2003; Tsvetsinskaya, 2003) are available. 
Only few studies have addressed the impact of high 
resolution climate grid cell on simulation crop yield 
(Angulo et al., 2013; Olesen et al., 2000). Most of 
them are performed in flat zones, and they are based 
on ground meteorological records and the spatial 
density is generated using interpolation techniques, 
where the unknown values need to be computed 
(Angulo et al., 2013). 

Several downscaling techniques have been performed 
to improve the local crop response reducing the grid 
resolution (Daly, 1994; Guan et al, 2009; Wilby and 
Wigley, 1997). Downscaling produces important 
differences of climate output, and hence in modeled 
crop yield response (Baron et al., 2005; Mearns et 
al, 2003; Tsvetsinskaya, 2003). Mearns et al. (2003) 
reported in 25% decrease in spring rains, downscaling 
from 400 km to 50 km influencing negatively the 
yield and quality of wheat crop. Similar results 
were reported by Baron et al. (2005) in West Africa 
and Tsvetsinskaya (2003) in Southern USA.  The 
grid cell resolution changes has been evaluated 
by dynamical models (e.g. WRF, MM5) with high 
number of computations and large numerical error 
(Von Hardenberg et al., 2007). The latter problem 
has been solved in part by topographic downscaling 
using multi-regression approach (Daly, 1994; Guan 
et al., 2009; Rupp et al., 2012). For example, the 
precipitation can be distributed from a low to high 
cell resolution by empirical functions based on 
topographical predictors (Grupta and Waimire, 1993). 
The most important topographical downscaling 
model is the Precipitation Characterization with 
Auto-Searched Orographic and Atmospheric effects 
(PCASOA) (Guan et al., 2009). This model  includes 
a digital elevation model (DEM), where elevation, 
slope and aspects is regarded to improve spatial 
representation of climatic variables. Since the final 
scale resolution of topographical downscaling is < 1 
km, the question regarding the optimum climate grid 
cell resolution (OCGR) that represents the spatial 

crop yield variability under different topographical 
conditions becomes relevant. The latter is the focus 
of the present study. The spatial variability of any 
continuous variable can be represented using a 
semivariogram (Hengl, 2007). The semivariogram 
is a plot where the x-axis is the sampling distance 
(Km) from the y-axis variable measured from their 
neighbors. Thus, the y-axis is the variance of y denoted 
by [γ(h)] (Hengl, 2007). The γ(h) rises as the distance 
increases up to a maximum, the sill, a plateau, which 
is reached at distance h, the range (Hengl, 2007). 
This technique can be used to estimate h of the 
simulated crop yield to estimate OCGR influenced 
by topographical effects. Within the range h, the crop 
yield values are autocorrelated, thus any unknown 
yield point can be interpolated from their neighbors at 
any direction using the appropriated model. Beyond 
h, the crop yield variance is independent from their 
neighbors.

Chile has a mesoscale DGF-PRECIS climatic 
database at 25 km resolution (http://www.dgf.uchile.
cl/PRECIS/, last accessed July 2013) for the entire 
country (Fuelzalida et al., 2006). In the present study, 
we developed a methodological tool to predict the 
OCGR, based on a crop yield simulation using high 
resolution PCASOA model database downscaled 
from DGF-PRECIS under different topographical 
conditions (flat topographical zones, FTZ and hilly 
side complexes topographical zones, CTZ) in the 
Araucanía Region of Chile.

The aims of the present study were: i) to quantify 
the impact of topographical downscaling (PCASOA, 
Guan et al., 2009) on  low resolution database (DGF-
PRECIS) as climate input on a crop simulation model 
of winter wheat (Triticum aestivum L) (CERES-
DSSAT, 2008)  and ii) to estimate the OCGR  using 
a semivariogram of  simulated crop yield in FTZ and 
CTZ in Araucanía Region of Chile.
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2. Methodology

2.1. Study area

The region under study corresponds to the Araucanía 
Region (37°35’ and 39°37’ S - 73º31´ and 71.31´ W) 
covering 67,500 km2. Climate is characterized by a 
dry season between December and March with rainfall 
between 50 and 70 mm per month, which corresponds 
to a Mediterranean climate. The wet season is from 
May to September with maximum rainfall of 220-
270 mm per month. The mean annual precipitation 
is 1,200 mm (Rouanet, 1983). The warmest months 
are from December to February (10°C to 27 °C) and 
the coldest ones from June to August (3ºC to 8 °C) 
(Rouanet, 1983). The whole region is influenced 
by ENSO cycles (Montecinos and Aceituno, 2002), 
which produce an important interannual variability in 
precipitation and temperature (La Niña, dry-cold and 
El Niño, warm-wet phase, Grimm et al., 2000). The 
Araucanía Region presents important soil variability, 
mostly influenced by volcanic activity. According 
to Soil Survey Staff (2008) in the Region, there are 
several soils type; Andisols, Alfisols and Ultisols 
(CIREN-CORFO, 2002). The region presents the 
typical orographical pattern of central Chile. The 
Costal range (1,500 m.a.s.l.), called Cordillera de 
Nahuelbuta in the western side and Cordillera de los 
Andes in the eastern side (3,500 m.a.s.l.). From North 
to South, there is an intermediate depression with 
agriculture valleys of moderate height (Börgel et al., 
1979) where most Chilean wheat grains  produced 
(INE, 2007) (Figure 1). 

2.2. In-situ database 

We selected 56 meteorological stations located in the 
Region (Figure 1) with a complete rainfall records from 
1961 to 1991 (see below), whereas a few stations (5) 
presented climate records such as photosynthetically 
active radiation (PAR) and temperature. Using the 
rule of decade continuous years or 15 years of non-
continuous precipitation records between 1961 and 
1991, 10 selected stations were used to calibrate the 

mesoscale DGF-PRECIS database. These criteria were 
defined to include the records within Pacific Decadal 
Oscillation, which is the main source of climatic 
variability in the Region (Newman et al., 2003). 
The remaining 46 stations were used to validate the 
PCASOA model output (see section 2.4).

2.3. Calibration and validation of DGF-PRECIS 
database

The mesoscale database was used and it was obtained 
from PRECIS model, which was applied to the continental 
Chilean territory between 1961 and 1991 (Fuenzalida et 
al., 2006). DGF-PRECIS database was created in 2006 to 
simulate the impact of climate change from the dynamic 
downscaling at 25 km grid from HadCM3 model (300 km) 
(Fuenzalida et al., 2006). DGF-PRECIS dataset considered 
42 climate variables including PAR, temperature, and 
rainfall. In this study we consider 108 pixels of 25 km 
each from DGF-PRECIS database. The simulated rainfall 
was validated by comparing the mean precipitation of 
each month with in-situ climatology records (1960-1991) 
for each of the ten selected meteorological stations. DGF-
PRECIS database underestimated the rainfall in winter and 
autumn, but overestimated this variable in summer and 
spring. Thus, the database was corrected by computing 
a monthly ratio of in-situ and modeled data. This value 
was multiplied by each monthly value of DGF-PRECIS. 
Therefore, a corrected monthly rainfall was used. Since 
temperature and solar radiation could not be validated 
using meteorological records, these variables were used 
directly from DGF-PRECIS database for crop modelling.

2.4. Calibration and validation of PCASOA model 

The corrected DGF-PRECIS was downscaled from 25 
km to 1 km using PCASOA model for projecting the 
rainfall (Guan et al., 2009). PCASOA is a statistical 
model based on multi-regression equation at 1 km of 
grid resolution (Guan et al., 2009) using topographic 
significant variables (coordinates, elevation, slope and 
aspect):

(1)
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where Y is the rainfall, Xf1 and Xf2 are the Easter and 
Northern coordinates respectively (in UTM projection 
corrected by the scale factor), Xf3 is the altitude (in 
km), Xf4 is the sin of the aspect, Xf5 is the cosine of 
the aspect, Xf6 is the slope, and b0-b5 are coefficients. 
To run the PCASOA model we used: i) the corrected 
DGF-PRECIS database as ASCII list format with UTM 
projection coordinates and ii) DEM model in ASCII 
grid format and projected in the same geographical area. 
Detailed knowledge to run PCASOA model was also 
considered as indicated by Guan et al (2009). The DEM 
was obtained from the Global Topography (GTOPO30) 
project (Harding et al, 1999) for the Araucanía Region. 
This consists of 30 arc-second (about 1 km) altitude 
maps from radar satellite records. The PCASOA was 
calibrated by fitting a multiple regression model using 
topography characteristics as independent variables with 
the corrected DGF-PRECIS rainfall grids as dependent 
variable. Thus, the model was fitted to the result 
obtained by the equation for each climate grid in the 
time serie, to generate 1-km rainfall. Only the significant 
topographical variables (p < 0.05) were considered 
for the parameterization of the equations. The output 
PCASOA model was the rainfall grid downscaled at 
1 km, affected by significant topographical variables. 
Finally, the PCASOA model was over 125 pixels (25 
x 25 km) using the corrected database from DGF-
PRECIS, giving a total of 67,500 fine resolution grid < 
1 km per month. 

The downscaled rainfall records were validated by 
comparing the climate average of the remaining 46 
meteorological stations records. The validation showed 
a positive bias through the year, except for summer 
season. However, this bias was less than 15% in the 
growing season (data not shown). This error should be 
assessed to the crop modeling impact, but the error is 
comparable with other models validated under similar 
topography zone (Diaz et al., 2010).

The standard spatial deviation of elevation index 
(SSDE, Biteuw et al., 2009) was used to separate the 
studied area in two large homogeneous topographical 
zones: i) the flat topographical zone, FTZ including 

intermediate depression valleys and flat agricultural 
areas and ii) the complex topography zone, CTZ, 
namely hilly-side valleys and both mountain ranges. 
The SSDE consists of a 12.5 km radius area with SSDE 
< 100 m.a.s.l. for FTZ and > 100 m.a.s.l. for CTZ. 
The FTZ, 21,875 km2 and the CTZ covered an area of 
22,500 km2 including 21 and 36 meteorological stations 
respectively. The remaining 23,125 km2 represented 
the sea and high montains. The selected FTZ were 
associated to two stations: Maquehue (38°46’ S-72°38’ 
W) at the Experimental Farm Station of Universidad de 
La Frontera and Puerto Saavedra (38°47’ S-73°24’ W). 
The CTZ were associated to Angol (37°58’ S -72°50’ 
W) and Cunco (38 55’S -72°2’ W) (Figure 1).

2.5. Validation of crop simulation model 

Crop simulation was performed by CERES crop model 
included in the supported decision system (DSSAT, 
V.4.0). This model is the most used for estimating the 
climate change impact on cropping responses (Meza et 
al., 2008; Wo et al., 2013). The model allows changes 
in several parameters such as CO2 concentration, 
fertilization, irrigation schedule, and the use of different 
varieties. CERES model requires a daily weather 
(maximum and minimum temperature, rainfall and 
PAR radiation), soil dataset, management conditions, 
and genetic-crop parameters (Jones et al., 2003). The 
corrected DGF-PRECIS database was downscaled on 
monthly terms, but we required climate on daily basis. 
A stochastic weather generator CLIMGEN (Campbell, 
1990) was used. To estimate the yield variability, we used 
the rainfall output dataset from PCASOA model and PAR 
and temperatures from corrected DGF-PRECIS database. 
Thus, we produced 50 synthetic years of weather data.

In the present study, the selected variety was the generic 
DSSAT winter wheat defined by seven coefficients: 
vernalization days (60 days), photoperiod effect (75 
days), grain filing duration (500 °C degree days base 
10 °C), kernel number (30 units kg-1), kernel average 
weight under optimum condition (40 mg), stem and 
spike dry weight at maturity (1.5 g), and phyllochron 
interval (95 °C degree days base 10 °C).  
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Figure 1. Araucanía Region, (Chile) showing 56 meteorological stations covering an area of 44,375 km2. The rest 
23,125 km2 of the total Region area is the sea and high mountains areas. The station located close to the region borders 
were used to avoid boundary effects. The names  inserted show the zones used for estimating the optimal grid cell 
resolution. 
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These coefficients correspond to European winter wheat in 
DSSAT system. The crop model management parameters 
were defined based on the current values used by the 
farmers in the Region (sowing in May, 250 plants m-2 and 
row spacing 16 cm). Since the present study focused on 
determining the effect of climate grid cell resolution based 
on the simulated grain yield, we fixed soil data obtained 
from the generic soil default in DSSAT (IB00000002). 
For simulation, phosphorous and other nutrients in soils 
were not limiting, except nitrogen (N) which was not 
considered (Angulo et al, 2013; Palusso et al., 2011).

CERES model output was validated by comparing 
the observed winter wheat yield in two season years, 
2008 and 2009, from experiments carried out across 
the Region.  One experiment was performed at the 
Experimental Farm Station in Maquehue (Universidad 
de La Frontera) using winter wheat (cv. Kumpa), seeded 
under unlimited phosphorous and other nutrients, 
except N. Five levels of N fertilization (urea), including 
a control without N  were applied. Other experiments 
(1988-2007) of non-N fertilizer control winter wheat 
across the region were also regarded (Campillo et al., 
2010; Campillo et al., 2007; Rouanet, 1994).  The 
comparison between simulated and observed yields was 
performed using a parwaise sample t-test (see below).

To assess the impact of the scale change of climate 
variables as affected by the topographical conditions 
on the simulated crop yield, we compared the 
difference between simulated yield using in-situ 
rainfall records and those obtained from corrected 
DGF-PRECIS and PCASOA model. These 
comparisons were performed using a pairwise sample 
t-test, the root squared mean error (RSME), and a 
Q-plot. These comparisons were computed based on 
the difference between in-situ simulation and the low 
and high resolution simulations.  

2.6. Optimal climate grid cells resolution

To estimate the OCGR we used a spatial technique, the 
semivariogram to compute the range h, the distance 
where the simulated winter wheat yield variability 

can be predicted.  We simulated the yield on high 
resolution cell (1 km) nested within a low resolution 
cell (25 km) in a typical year as 1970 (i.e. a year close 
to the historical average and monthly distribution of 
rainfall). Although the semivariogram techniques 
can be computed considering the neighbor in all 
directions (omnidirectional semivariogram), in this 
study the directions were selected based on orographic 
dominance. We considered a longitudinal transect 
from West to East and latitudinal transect from North 
to South in the CTZ and FTZ, respectively. Thus, four 
simulated crop yield semivariograms were computed, 
two for each  FTZ and CTZ using ARC-GIS 9.1 
software (Redland California, USA).

2.7. Data analysis 

The t-paired test was conducted using EXCEL 2003 
in the module Data Analysis. All tests were at 0.05 
level. 

3. Results

3.1. Crop model validation and spatial resolution 
impact 

The simulated wheat yield (1961-1991) ranged from 
2.8±0.2 Mg ha-1 to 3.3±0.2 Mg ha-1, whereas in the 
field experiments, it ranged from 2.5±0.5 Mg ha-1 to 
3.5±0.3 Mg ha-1 and they were typical from low yield 
crop in the crop rotation when no N is added. There 
were no significant differences within zones and 
between zones, although the crop yield were slightly 
lower in Vilcún (Figure 2). 

The average error values of simulated crop yield using the 
PCASOA or corrected DGF-PRECIS database, above 
or below simulated crop yield values was obatained 
using in-situ data records from the 46 meteorological 
stations is shown in Figure 3. There were significant 
differences in the error between simulated crop yields 
using high resolution or low resolution database relative 
to in-situ ground simulation.
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Figure 2. Average of observed (1988-2007) winter wheat yield field experiments from Vilcún (n=6), Maquehue 
(n=14) and Angol (n= 15) (see Figure 1) representing the flat topography zones (FTZ) and complex topography zones 
(CTZ) in the Araucanía Region as compared with the simulated (DSSAT) winter wheat yield average (1961-1991) at 
the same locations. Bars represent the standard error of the mean.

Figure 3. Boxplot error, i.e. the percentage of yield crop relative to the simulated (DSSAT) winter wheat yield in 
a typical year 1970 (a year close to the historical average) and monthly distribution of rainfall) by PCASOA high 
resolution (< 1 km) climate output database and corrected DGF-PRECIS low resolution (25 km) climate output 
database relative to in-situ climate records simulation from 46 meteorological stations (1961 and 1991) in the 
Araucanía Region of Chile. Grey line in each box shows the mean error and black line shows the median error.

413



Orrego et al.  

The error from high resolution database ranged from 
-27% to 42 % of the ground simulation, whereas for 
low resolution database it ranged from -72% to 153 %, 
doubling PCASOA yield errors. In fact, the RSME of  
PCASOA is less than that of DGF-PRECIS (0.319 and 
0.768 Mg ha-1 respectively). 

The simulated yield in the FTZ and CTZ using the 
high or low resolution database and the ground 
records data from the stations by zones is presented in 
Figure 4. The absolute amount of winter wheat yield 
was different only in CTZ (p < 0.05) (Figure 4b). 
High resolution database showed less error than low 
resolution database improving the crop simulation in 
about a 50 % (RSME 0.257 Mg ha-1 for PCASOA and 
0.719 Mg ha-1 for DGF-PRECIS). In the FTZ, high 
resolution simulation showed the lowest variability, 
whereas low resolution showed the highest. However, 
the simulated mean yield values were similar among 
all databases (high resolution 2.24 Mg ha-1, low 
resolution  2.25 Mg ha-1, and  in-situ data 2.26 Mg 
ha-1). In contrast, in CTZ the simulated yield using 
in-situ and PCASOA database was 1.97 Mg ha-1 and 
2.09 Mg ha-1, respectively, whereas the variability for 
low resolution in the CTZ was highest (2.20 Mg ha-

1). Comparing the error of high resolution and low 
resolution database, high resolution database showed 
less error in both zones (-27 to 46 % in FTZ and -8 to 
40 % in CTZ compared with low resolution database 
(-72 to 75 % and -51 to 153 %) (Figure 4c and 4d). 

3.2.  Optimal climate grid cell resolution

The semivariogram of the crop yield variability to 
estimate the OCGR for the FTZ is shown in Figure 
5 and for CTZ in Figure 6. Both, FTZ and CTZ 
showed a spatial autocorrelation within the distance 
h, hence spatial variability could be predicted by a 
semivariograms using the default model provided 
by ARC-GIS 9.1 software. In fact, all zones showed 
Moran’s indexes close to one, which indicates that 
the database was autocorrelated (p< 0.01). Some 
semivariograms reached a stationary (steady-state) 
variability showing the maximum distance h at < 25 

km (Figure 6). In those cases where the steady state 
was not reached, we assume that h was > 25 km.  For 
example, in the FTZ (Maquehue and P Saavedra), 
there was no range h because the semivariogram did 
not reach a stationary yield either in North-South or 
East-West directions, suggesting a range ≥ 25 km 
(Figure 5). In the latter case we consider the OCGR 
beyond the mesocale 25 km resolution grids. In 
contrast the OCGR in Cunco (CTZ) was estimated 
< 25 km, depending on the directions North-South 
or West-East (Figure 6). In Angol, h was 15 km 
from North to South and 17 km from West to East 
(Figure 6). The last two cases are explained by the 
topography.  In Cunco, there is a valley crossing 
the cell at West-East direction, dividing the area 
in hillside and valley.  In Angol, the Nahuelbuta 
Mountains present an elevation just on the northern 
zone, which increases the rainfall with respect to 
the southern zones.

4. Discussion

In the present study we assumed that downscaling 
climate low resolution rainfall database for crop 
model is useful to predict an OCGR. We hypothesized 
that the spatial resolution of the simulated crop yield 
can be computed, which in turn represents the optimal 
grid cell resolution < 1 km database under flat and 
complex-topography scenarios. For this purpose, we 
used a semivariogram technique. This methodology 
could be generalizated to any crop and zone, being 
an intersting tool for assessing the climate effect 
on crop systems. Also, OCGR is not only useful 
for crop research, but also for climate grids,whish 
are commonly used in several applications related 
with forest activity, wild live, human health and 
water suply, which can use similar approach to the 
technique proposed in the present study. 

In contrast to the approach used in the presente study, 
as far as we know, there are few papers estimating 
OCGR using up-scaling interpolation from the 
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Figure 4. Boxplot of (a-b) absolute simulated (DSSAT) winter wheat yield from in-situ climate records from 46 
meteorological stations (1961 and 1991) in Araucanía Region and (c-d) relative error of simulated crop yield of typical 
year 1970  a year close to the historical average by PCASOA high resolution (< 1 km) output database and DGF-
PRECIS low resolution (25 km) climate database relative to in-situ climate records. The gray lines in each box show 
the mean of yield or the mean of errors and black lines, the median of these values.

meteorological record dataset (Olesen et al., 2000¸ 
Wong and Asseng, 2006) and no papers using spatial 
resolution and topographical features for OCGR 
estimation. That OCGR estimation was possible because 
the high resolution climate grid obtained by PCASOA 
model, which improved significantly the simulated crop 
yield (50 %) introducing the topographical effects in 
the CTZ. This contrasts with the results obtained by 
Olesen et al. (2000), who reported the spatial crop 

variability in Denmark at 10 km grid. This by Olesen 
et al. (2000), who reported the spatial crop variability 
in Denmark at 10 km grid. This effect could not be 
explained by the climate grid cell resolution, since 
there was no correlation between the climate and 
yield variability. Angulo et al. (2013) studied the 
spatial crop yield variability in Norway and they 
reported yield differences of 4 % when the scale 
resolution changed from in-situ data to  20 km grid.
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They used several models (including DSSAT) for 
simulating crop yield and they observed that the 
resolution scale explained less the variability than 
the crop model, because the study was performed in 
the flat agricultural areas. In contrast to the results 
of Olesen et al. (2000) and Angulo et al. (2013), the 
present results indicated a clear relationship between 
the topographic variables and the impact of climate 
resolution on crop yield simulation (Figure 4).

Although up-scaling is the unique reference for 
comparing our results, both approaches have different 
sources of errors. It expected that both approaches can 
present different yield responses. Up-scaling depends 
on the interpolation method and the climate record 
density. The spatial resolution technique proposed 
here depends on climate modeling quality and 
agriculture feasibility, mainly limited by topographical 
considerations. We think that the present technique is 
more suitable than up-scaling from synthetic scenarios 
based on climate grids (e.g. climate change and climate 
cycles) or where interpolation methods are unreliable 
due to lack of data, and/or low spatial autocorrelation 
in FTZ.

From our results, a poor correlation (r2 = 0.30, p< 
0.01) between high rainfall of in-situ records data (> 
2,000 mm) and crop yield was observed, while the 
opposite was true (r2 = 0.71, p< 0.01) at low rainfall 
(< 2,000 mm). This could be explained because 
high rainfall improves the crop growing conditions, 
reducing the effect of climate variability. In fact, 
when rainfall exceeds 2,000 mm, soil moisture is not 
limiting factor for crop growth and precipitation is not 
related to yield variability (Wong and Aseng, 2006). 
This result supported our hypothesis, the topography 
influences on OCGR estimation, particularly in 
CTZ. Therefore, from an operative point of view, the 
OCGR can be well estimated in dry years to increase 
the sensitivity of the crop simulation response to 
climate input to assess the climate effect on crop 
yield. On the other hand, in the present study we 
shows that mesoescale (25 km) database is a suitable 
climate grid resolution for representing the spatial 
crop-yield variability in flat zone in winter wheat. 
Our result validate the conclusions of several works 
based on mesoescale climate models performed in 
the flat zones (e.g. Cooley et al., 2005; Meza et al., 
2008; Palusso et al., 2011).

Figure 5.  Spatial variability of simulated (DSSAT) winter wheat yield representing the flat topography zones 
(FTZ) in the Araucanía Region. Left semivariogram is North-South direction and right semivariograms is East-
West direction. Moran probability index (0 = non autocorrelation and 1 = full autocorrelation). Vertical line shows 
the estimated the distance range h to calculate the optimal climate grid cell resolution (OCGR).
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However, CTZ require higher climate grid resolution 
for representing it spatial crop variability. Although 
the most important productive zones of wheat are 
locate on FTZ, CTZ is a valuables agricultural land 
with microclimates and where small (subsistence) 
farmers are located. These  zones are very vulnerable 
to climate damage by extreme events (presently 
unknown because of the lack of climate records).  

Thus, downscaling for the study type conducted 
here should be focused on CTZ, including hilly-
side mountains areas. Climate in this area can 
be modeled using improved input grids such as 
OCGR calculated using our approach. In addition, 
our approach can be used for examining the 
microclimate at high resolution climate dataset for 
public polices makers in the near future.

Figure 6. Spatial variability of simulated (DSSAT) winter wheat yield representing the complexes topography zones 
(CTZ) in the Araucanía Region. Left semivariogram is North-South direction and right semivariograms is East-West 
direction. Moran probability index (0 = non autocorrelation and 1 = full autocorrelation). Vertical line shows the 
estimated distance range h to calculate the optimal climate grid cell resolution (OCGR).

5. Conclusion

In this study we provide an approach for selecting 
the optimal scale linking climate grids with crop 
modeling to assess the impact of high resolution 
downscaling technique on crop simulations to 
calculate the optimal climate grid cell resolution 
(OCGR). of (DSSAT) winter wheat yield in 
Araucanía Region. We show that downscaling 
using PCSOA model  improves the crop model 
performance in about 50 %, reducing the RSME from 
0.778 to 0.319 Mg ha-1. These effects depend on the 
topographical conditions. In flat topographical zones 
there are no significant differences in the crop yield 
simulated with high resolution (< 1 km) or mesoscale 

resolution (< 25 km) database, whereas in complexes 
topographical (hilly side and mountains) zones these 
differences were highly significant. In the Araucanía 
Region in the flat zones, the optimal climate grid cell 
resolution was >25 km, while in complexes zones, it 
was between 8 and 17 km. The optimal climate grid 
cell resolution estimation was also affected by total 
rainfall and topography variables (altitude, aspect 
and slope) providing a clear assessment to a simple 
estimation of climate grid resolution for optimal crop 
yield. The broad implication of our findings is: In flat 
zones , climate we do not require downscaling from 
mesoscale models database, whereas in hilly-side and 
complex topography zones downscaling to simulate 
the optimal crop yield is required.
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